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Automated detection of grain boundaries in electron microscope images of polycrystalline materials could help
accelerate the nanoscale characterization of myriad engineering materials and novel materials under scientific
research. Accurate segmentation of interconnected line networks, such as grain boundaries in polycrystalline
material microstructures, poses a significant challenge due to the fragmented masks produced by conventional
computer vision algorithms, including convolutional neural networks. These algorithms struggle with thin
masks, often necessitating post-processing for effective contour closure and continuity. Previous approaches in
this domain have typically relied on custom post-processing techniques that are problem-specific and heavily
dependent on the quality of the mask obtained from a computer vision algorithm. Addressing this issue, this
paper introduces a fast, high-fidelity post-processing technique that is universally applicable to segmentation
masks of interconnected line networks. Leveraging domain knowledge about grain boundary connectivity, this
method employs conditional random fields and perceptual grouping rules to refine segmentation masks of any
image with a discernible grain structure. This approach significantly enhances segmentation mask accuracy by
correctly reconstructing fragmented grain boundaries in electron microscopy images of a polycrystalline oxide.
The refinement improves the statistical representation of the microstructure, reflected by a 51 % improvement in
a grain alignment metric that provides a more physically meaningful assessment of complex microstructures than
conventional metrics. This method enables rapid and accurate characterization, facilitating an unprecedented
level of data analysis and improving the understanding of grain boundary networks, making it suitable for a
range of disciplines where precise segmentation of interconnected line networks is essential.

1. Introduction

Integrating computer vision with electron microscopy has signifi-
cantly enhanced efficiency in materials science by speeding up tradi-
tionally laborious and time-consuming processes [71]. The
advancement of (scanning) transmission electron microscopy ((S)TEM)
is pivotal in examining grain boundary (GB) networks and other
microstructural features in hard materials like metals and ceramics [72].
These techniques yield insights into structural characteristics such as
(dis)order [75], dislocations [56], phase transformations and GB
segregation [53]. GB networks, often statistically represented [74],
require extensive data for analysis. Revealing large-scale information
like average grain sizes facilitates high-throughput experiments [80]
aimed at elucidating local GB properties [72] and atomic (dis)order
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[75]. However, developing these techniques is challenging due to the
complex nature of grain structures and their boundaries in ceramics,
metals, and composites [68,69], involving issues like managing over-
lapping grains [49] and deciphering defects of different dimensionality
such as GBs, triple junctions, and nodes [6]. This complexity is accen-
tuated when analyzing GB networks, influenced by factors like crystal-
lographic orientations, interfacial segregation, and varied local atomic
environments, affecting the mechanical, electrical, chemical, and mag-
netic behavior of materials [1-3,5,10-13,37,51,63,78]. GBs range from
ordered high-symmetry structures to high-energy disordered configu-
rations [24], with networks exhibiting intricate relationships due to
energetic competition between interfacial planes, atomic sites, and
solute-solute interactions [4,26,70]. Moreover, local ordering and local
hardening can be influenced by solute segregation to GBs [6, 45].
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Therefore, developing predictive techniques is challenging, considering
the multifaceted role of GBs where local atomic environments, segre-
gation behaviors, and solute interactions are closely connected. This
complexity often results in (S)TEM image contrasts, posing a unique
challenge for conventional segmentation methods in identifying GBs.

Addressing this, semantic segmentation — a computer vision strategy
categorizing each pixel into a class [46] — emerges as a promising
approach for autonomous grain segmentation. Historically, two tech-
niques have been prominent: traditional image processing and modern
computer vision techniques. Traditional methods focus on low-level
image details, using techniques like thresholding [54], morphological
processing [21], edge detection with preset filters [29], unsupervised
machine learning clustering [73], watershed transformation [62], and
region-growing [61]. Their effectiveness often depends on image qual-
ity, influenced by factors like resolution, color balance, brightness, and
gradient similarity [44]. Conversely, modern computer vision ap-
proaches, particularly convolutional neural networks (CNNs), provide a
more sophisticated, high-level grain representation [23,27,55,58]. Ar-
chitectures like DeepLab [18], Mask R-CNN [30], and U-Net [60] are
employed for their adaptability to different image resolutions and
consistent segmentation capabilities.

However, CNNs’ large perception fields limit their ability to produce
accurate pixel-level labels [46], which poses a problem in an inter-
connected grain network where the segmentation mask is a few pixels
wide with a label assigned to each pixel (e.g., 1: GB, 0: grain interior).
Metrics like intersection-over-union (IoU) and Dice similarity coefficient
(DSC) are used to assess the alignment of predicted masks with ground
truth. But, in thin masks, even minor 1-pixel deviations significantly
affect accuracy [19]. Researchers have explored various categories of
post-processing methods to enhance the segmentation accuracy of thin,
interconnected line structures like GBs. One prominent category in-
volves probabilistic models, which refine initial segmentation masks by
enforcing spatial consistency. For instance, one such approach has been
successfully applied to road network extraction from aerial imagery by
smoothing fragmented predictions and maintaining continuity [9]. This
was achieved through an iterative search process, where a CNN-driven
decision function directly generated the road network graph from the
CNN’s output. In another application, Dulau et al. [25] demonstrated
this by improving the continuity of retinal blood vessel maps, by
removing misclassified pixels erroneously identified as retinal vessels,
and by rejoining vessel segments that are correctly identified yet remain
separated. However, these techniques typically rely on heuristic rules
and can struggle with noisy or incomplete initial predictions.

Morphological and perceptual grouping approaches represent
another prevalent set of post-processing methods. Morphological oper-
ations, such as dilation and skeletonization, have been widely used for
tasks like cleaning up segmentation masks or connecting small gaps in
biomedical vessel segmentation [40]. Perceptual grouping methods, like
tensor voting, have been employed effectively to reconnect fragmented
segments in pavement crack detection [81]. Despite their utility, these
methods often require extensive manual tuning of parameters, limiting
their general applicability across diverse datasets. In contrast, model-
specific integrated post-processing methods, like Li et al. [42], have
demonstrated remarkable accuracy by incorporating generative adver-
sarial networks and multi-task learning explicitly designed for GB seg-
mentation. Furthermore, Patrick et al. [52] introduced an automated
grain boundary detection framework based on the U-Net architecture for
BF TEM images that achieves high segmentation accuracy with minimal
manual intervention, improving processing throughput. Yet, the
specialized nature and reliance on tailored parameters significantly
restrict their general use beyond specific materials or image types. Main
challenges include connecting adjacent pixels and removing isolated
ones, relying on user-defined thresholds. These methods often miss
crucial constraints related to GBs, essential for accurate segmentation of
complex grain structures.

Here, this work aims to address the gap in semantic segmentation for
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(S)TEM images of polycrystalline materials by introducing a versatile
post-processing method to refine interconnected GB network masks.
This method, based on insights into GB connectivity [43] and the
interconnected nature of GB networks [14], is designed for broad
applicability across different crystalline materials. At its core, it employs
segmentation masks from computer vision models to generate condi-
tional probability maps using conditional random fields (CRFs),
bridging gaps left by CNNs. The required feature functions for CRFs are
selected based on perceptual grouping rules [50]. Applicable to any
crystalline material with discernible grain structure, and adaptable to
other domains with interconnected line networks, this method can be
used as a post-processing step for various grain segmentation masks
from imaging systems and vision algorithms, enabling real-time seg-
mentation refinement. It marks a significant advancement for materials
scientists, allowing rapid and precise GB segmentation in complex mi-
crostructures with poorly resolved boundaries, and enabling previously
inaccessible large-scale data analysis, greatly enhancing statistical rep-
resentation of GB networks.

2. Methods

The systematic approach for grain segmentation refinement, aimed
at addressing the limitations of conventional computer vision algo-
rithms, is outlined in the subsequent sections. Initially, a computer
vision model is developed, serving as a preliminary step to generate
segmentation masks. These thin segmentation masks which include
fragmented sections form the foundation for applying the proposed hi-
erarchical CRF method. This method, along with perceptual grouping
principles, is introduced to address various aspects of grain boundary
properties and connectivity. For a given image, the solution that maxi-
mizes the conditional probability obtained from the hierarchical CRF
corresponds to a label configuration that determines points of connec-
tion. Subsequently, a novel path tracing algorithm is introduced,
designed to connect fragmented segments using the label configuration
derived from the CRF predictions.

2.1. Computer vision model development

The input dataset for model training consisted of high-angle annular
dark field and annular bright field STEM images recorded with a Nion
UltraSTEM100 aberration-corrected STEM operating at 60 kV. The
material is an electrically conducting polycrystalline oxide, fluorite
Pr.1Ce.902, synthesized by pulsed laser deposition as a layer of nearly
uniform thickness (~30 nm) atop an amorphous silicon nitride free
standing substrate.

The images in the dataset are digitized and manually annotated by
tracing GBs by hand using a digital drawing tablet, a process widely
utilized in materials science, to assess grain sizes and network structures
for subsequent analysis of material properties. GBs marked on the im-
ages constitute the computer vision ground truth (CVGT), serving as
targets for model training. To minimize human operator bias, both
annular dark field and bright field images of the same areas were an-
notated at different times. Regions marked as interfaces in both image
types reinforce the trained model’s predictions of interface pixels.

A pre-processing pipeline is implemented to enhance data diversity
and simulate realistic experimental conditions. The dataset is initially
partitioned at the level of the original images into training and valida-
tion sets using a 70-30 split. Each image is subsequently subdivided into
non-overlapping patches of 512 x 512 pixels. Each patch typically
contains approximately 64 grains, capturing the inherent repetitive
microstructural features of the material.

To further improve model generalization and simulate experimental
variability, an augmentation pipeline is applied exclusively to the
training patches. This pipeline performs random brightness adjustments
(factors ranging from 0.8 to 1.2), Gaussian blurring (with sigma values
between 0.5 and 1.5), and rotations (between —45° and 45°). By
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applying 20 random augmentations per training patch, the effective
number of training samples is expanded to 4480, while the validation set
remained unaltered at 144 patches to ensure an unbiased evaluation of
model performance.

A computer vision algorithm for image segmentation is developed
using a modified U-Net architecture [60], with VGG16 model [66]
serving as the encoder backbone. This architecture, effective for varying
image resolutions, features a symmetric encoder-decoder structure [60]
with skip connections to preserve key details lost during downscaling
[31]. It consists of a contracting path capturing low-level features while
reducing spatial size and increasing channels, and an expanding path
that upscales these features to original size, reducing channels and
capturing high-level features for accurate segmentation [60]. The model
includes four decoder blocks, each with a 2D convolution layer matching
the corresponding encoder layer’s channels, followed by concatenation
with the encoder’s skip connection and two convolutional blocks with
batch normalization and ReLU activation. The final output uses a sig-
moid function. Compiled with Adam optimizer [36] with a learning rate
of 10~* and a custom loss function (1 — DSC), the model employs early
stopping based on validation loss improvement, monitoring metrics like
DSC, IoU and binary accuracy.

The objective of this work is not to achieve the highest possible
segmentation accuracy but rather to demonstrate that the post-
processing model is learning meaningful features rather than over-
fitting. To this end, no extensive hyperparameter tuning or further
optimization techniques, such as learning rate scheduling, ensemble
methods, or advanced regularization, were pursued. Instead, a 3-fold
cross-validation strategy is employed on the augmented training set to
robustly assess the model’s performance. This approach ensures that the
model achieves a good enough performance level, with stable validation
results indicating that it is effectively capturing the key features of the
GBs without overfitting.
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2.2. A hierarchical CRF architecture

When labeling sequence is critical, such as for interface pixels, CRFs
emerge as a versatile tool. As a discriminative model, CRFs calculate the
conditional probability of a pixel or segment having the same label given
a sequence of observations [67]. CRFs require feature functions, math-
ematical representations of feature relationships [67]. An essential
characteristic of CRFs, rooted in their Gibbs distribution formulation, is
the concept of conditional independence. This implies that two pixels or
segments without a direct interaction (as defined by the CRF graph
structure) become conditionally independent once the state of their
neighborhoods is fixed. Thus, distant pixels, though possibly globally
correlated through intermediate connections, are directly independent
in the conditional sense. Practically, this means the CRF explicitly
models local and selected long-range interactions, making computa-
tional complexity manageable while preserving meaningful global
coherence.

To incorporate domain knowledge accompanying the CRF method,
the feature functions can be selected based on perceptual grouping
principles. These principles, derived from Gestalt laws of perceptual
organization, describe how humans intuitively perceive and interpret
the visual world [50] and are relevant to grain segmentation refinement,
as illustrated in Fig. 1. Key principles include:

e The Law of Proximity, indicating that elements close together are
perceived as a group. In Fig. 1a, clustered dots exemplify this, aiding
in identifying nearby pixels or segments as part of the same GB,
especially areas of closely packed or intersecting boundaries.

e The Law of Similarity, where similar elements are seen as related.

Fig. 1b shows this with dots of the same color and shape, grouping

pixels or segments with similar characteristics for continuous GB

identification.

The Law of Closure, involving the mind’s tendency to complete

incomplete figures, as in Fig. lc. This helps in filling gaps in GB

Gestalt Principles of Perceptual Grouping
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Fig. 1. Overview of the utilization of the Gestalt principles of perceptual grouping. (a) Proximity, (b) similarity, (c) closure, (d) good figure, and (e) continuity
principles are satisfied through the use of (f) pixel-based CRF, and (g) segment-based CRFs resulting in (h) a refined segmentation. Each subplot provides a distinct
visualization or method that contributes to the overarching theme of the paper, the robust analysis of GB networks.
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networks that appear broken, addressing challenges posed by poorly
resolved and complex structures in TEM images.

The Law of Good Figure (or Pragnanz), where complex images are
perceived in their simplest form, as seen in Fig. 1d. This aligns with
GBs’ tendency to minimize energy by adopting simpler shapes,
reflecting the natural formation and evolution of GBs in materials.
The Law of Continuity, favoring smooth patterns. Fig. 1e demon-
strates elements aligned in a line or curve as a cohesive group,
essential for maintaining continuous and smooth paths consistent
with the physical properties of grain structures.

Fully-connected independent pixelwise classification, often leading
to patchy segmentation masks due to disregarding pixel relationships, is
computationally demanding [8]. CRFs are preferred in such contexts as
they effectively incorporate spatial relationships between pixels using
pairwise costs. Early models primarily utilized grid graphs for defining
these costs, which restricted information transfer among adjacent pixels
[65]. However, the introduction of DenseCRF architectures allowed for
fully connected graphs and more expressive pairwise potentials [22,38].
Higher-order CRFs for contour completion bring three key benefits to
grain segmentation: (i) they foster label continuity among spatially and
intensity-wise close pixels, (ii) facilitate modeling of long-range in-
teractions, and (iii) use linear inequalities for modeling extension and
continuity constraints.

In this work, a hierarchical methodology for object recognition and
segmentation is introduced, combining pixel-based and segment-based
definitions synergistically. The novelty of this approach lies in its
hypergraph architecture, which integrates a DenseCRF for low-level
pixel features with a higher-order, segment-based CRF that enforces
domain-specific knowledge through perceptual grouping rules. This
synergistic combination allows the model to refine fragmented bound-
aries by considering both local pixel evidence and global structural
coherence, a capability not explicitly present in standard DenseCRF or
higher order CRF models alone. The architecture is designed as a
hypergraph, with vertices as individual pixels and hyperedges as seg-
ments. Inter-segment connections are construed as edges between
hyperedges. Initially, a DenseCRF architecture [38] processes low-level
pixel features (Figs. 1(a), (b), and (f)), which then inform the higher-
level segment-based features, as illustrated in Figs. 1(c)-(e), and (g).
This layered strategy allows for the integration of both local and global
information, adhering to perceptual grouping principles.

The conditional probability of segments, which describes the prob-
ability distribution over all possible label configurations, is determined
by minimizing Gibbs energy, comprising unary, pairwise, and higher-
order terms. The unary potential encodes the likelihood of individual
pixels belonging to specific segments, either complete or broken. This
potential is derived from the pre-trained CNNs that provide scores for
each pixel, essentially constituting an initial coarse-grained classifica-
tion. Local consistency is subsequently enforced through edge-
preserving bilateral and Gaussian blur filters, yielding perceptually
coherent regions by evaluating neighboring pixels’ features like color
and proximity, as shown in Figs. 1(a) and (b). This effectively distin-
guishes segments in densely packed GBs, with non-conforming pixels
eliminated, depicted in Figs. 1(a), (b), and (f) with red circles. Subse-
quently, a graph-based technique is employed to identify completion
segments, which represent potential connections between broken seg-
ments. Due to computational limitations, only a subset of these
completion segments, selected based on predetermined criteria, are
deemed viable segments for further analysis. The various segment types
are visually differentiated in Fig. 1c, with complete, broken, and
completion segments shown in white, red, and yellow, respectively.

The pairwise potential, designed to capture long-range interactions,
functions effectively on identified segments to maintain global consis-
tency. It enforces completion and extension constraints, as described in a
previous contour completion model [79], aligning with the principle of
closure illustrated in Fig. lc. The completion constraint activates a
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completion segment only when its adjacent broken segment is active.
Simultaneously, the extension constraint ensures that an active broken
segment has at least one neighboring active completion segment, pre-
serving the continuity and integrity of the GB structure.

A higher-order potential incorporates specific visual characteristics
like contour sharpness, smoother segment transitions, angular differ-
ences between segments, and segment lengths. The model’s complexity
is managed by considering additional features such as the total effective
length of connected segments and the angular deviation from ideal
connection angles. This optimizes simpler, more stable GB forms,
adhering to the law of good figure, reflecting the natural evolution of
GBs to minimize energy and simplify complex structures for perceptual
coherence, as shown in Fig. 1d.

In this composite architecture, the hypergraph method efficiently
captures intricate relationships between pixels and segments, enabling a
thorough representation of spatial and geometric features in the image.
The primary goal is to achieve a binary label configuration that maxi-
mizes the conditional probability, representing the CRF’s maximum a
posteriori probability estimate. This poses a combinatorial optimization
challenge, where the ideal solution is the label configuration maxi-
mizing this probability. This optimization problem can be posed as a
mixed-integer linear programming (MILP) problem, which can then be
solved to obtain the optimal label configuration.

Identifying the optimal label configuration involves determining
local weights for interface features and global weights for unary, pair-
wise, and higher-order potentials. The optimal configuration is that
which most closely approximates the ground truth, leading to an NP-
hard combinatorial optimization problem. Being NP-hard, it is defined
by the property that while the validity of a solution, like a label
configuration, can be efficiently verified via the MILP equation, there is
no polynomial-time algorithm for optimal resolution. Consequently,
exact solutions to such NP-hard problems are computationally infeasible
[77], especially in images with hundreds of broken and completion
segments, typical of fragmented GB networks.

To address this challenge, this study employs differential evolution
to minimize the objective function, achieving a near-optimal solution.
As an evolutionary algorithm and global optimization method, differ-
ential evolution iteratively refines candidate solutions, adjusting their
weights based on performance metrics within set bounds [57]. This
process derives weights for the optimal label configuration by repeat-
edly solving the MILP with varied weight combinations. The resulting
optimal label configuration, indicated by activated segments (marked as
1 by the CRF), facilitates the smooth connection of completion segments.
This approach aligns with the law of continuity, essential for ensuring
continuous, logically flowing GBs in the segmentation process, consis-
tent with the physical nature of grain structures, as depicted in Fig. le.

2.3. Applying the hierarchical CRF to probabilistic image labeling

The conditional probability, P(Y|X), describes the probability dis-
tribution over all possible label configurations Y given the observed data
X. X refers to the entire set of observed data over the complete image,
containing all of the features (e.g., pixel intensities, color channels,
spatial segment information and any other characteristics of the images)
that are used to determine the labels Y. Y refers to the set of all labels or
the complete labeling configuration for an entire image, that is repre-
sented as a vector containing the labels for each pixel or segment. On the
other hand, y refers to the label of an individual unit, such as a single
pixel or segment. Essentially, each y; is an element of the set Y =
{¥1,....,¥n}. Yp, and Y, refer to the label configurations assigned to
pixels p; and segments s; that are part of a set, respectively. The indices i,
Jj, and k represent the different entities in the image, where i is the pixel
or segment that is currently being labeled, and j and k represent other
pixels or segments in the same clique as i. The relationships between i, j,
and k are encapsulated in the pairwise and higher-order terms of the
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CRF, capturing local and higher-order interactions in the image. The
overall probability distribution P(Y|X) is defined as:

1
P(YX) = mexp{ —E(Y|X) }, @
and
E(Y|X) = E,(Y,) +E, (Yxl, YSJ> 1 Ey (Yxl, Y, Ysk), @

where E,(Y,), Ep(Ys,, Yy), and Ex(Y;,, Yy, Y;,) are the unary, pairwise,
and higher-order Gibbs energies, respectively. These energies are
calculated based on the labeling of segments s;, s;, and s, not just in-
dividual pixels. Z(X) is a partition function that ensures a normalized
probability distribution (i.e., between 0 and 1), given by:

Z(X) = Zsl.s,.sk exp{ —E(Y|X)}. 3

The unary energy term in Eq. 2, E,(Yy,), is derived from the pixel-
based CRF where the unary term is generated by a CNN and the pair-
wise term is obtained from a Gaussian kernel. Explicitly, for the unary
term, the segment-based E, (Y,) can be defined as:

Eu(Yy) = Q7 prEYs,W“ (‘yp‘) "Zp[p]el’sl-pﬁp,wl’ (yp""yp") ' @

Here, Q" represent a global weight and # represents a classifier,
which identifies pixels as belonging to one of two segment types: com-
plete or broken segments. The set of segments is represented by S =S, U

(a) Pair Clique

(b) Completion Clique

Materials Characterization 230 (2025) 115694

Sp = {51, ...,5:}, which is the union of two segment sets; complete seg-
ments, S, and broken segments, Sp, respectively. These sets are utilized
to create segment cliques, which are groups of interconnected segments
categorized into pair cliques, and completion and broken cliques.
Sample cliques from each type are shown in Fig. 2a-c, where broken
segments are represented in red and completion segments in yellow. The
black pixels represent background pixels, gray pixels represent fore-
ground pixels, and white pixels correspond to isolated points. These
cliques represent different configurations of segments based on their
relationship and interaction with each other. A pair clique, C?, shown in
Fig. 2a, is comprised of a pair of broken and completion segments. A
completion clique, C¢, shown in Fig. 2b, describes a completion segment
and its neighboring broken segments. Finally, a broken clique, C%,
shown in Fig. 2c, contains all completion segments connecting to either
end of a broken segment.

At the classification stage, in addition to the broken and complete
segments, triple junctions, isolated points, and the natural curving an-
gles of segments are identified, which are shown in Fig. 2d for a sample
section of the segmentation mask. In order to obtain completion seg-
ments, first all possible completion segments between all pairs of iso-
lated points are generated, which is shown in Fig. 2e. Then, viable
completion segments, which are defined as non-occluding completion
segments below a predetermined length, are down selected from all
possible segments, which are shown in Fig. 2f. Hence, the classifier maps

the unary y,, (ypl) and pairwise y, (ypl7 ypj) energies of pixels consti-

tuting a segment, s;, to the segment’s unary energy E,(Yy), where

v, (yp(., ypj) is given by:

(c) Broken Clique

\

\r\

:é‘

@ Isolated Point @ Completion Segment

(d) Post-Classification

! @ Curving

(e) All Possible Segm

ents (f) Viable Segments

@ Completion Segment

Fig. 2. Visualization of cliques and classification processes. (a) Pair Clique (CP): Interaction between a broken (red) and completion (yellow) segment. (b)
Completion Clique (C®): A completion segment with its neighboring broken segments. (¢) Broken Clique (C®): Completion segments connecting to a central broken
segment. (d) Post-classification detailing broken segments, triple junctions, and natural curving angles in a segmentation mask. (e) All possible completion segments
generated between isolated points. (f) Selection of viable completion segments from the generated possibilities. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Wy (302, ) = (302, ) Dy [007k™ (£:55) ] ®)
where the pairwise-pixel features are given by the following equations:
I 2 2
kW (fi,ﬁ) =wo,Vexp{ — plz_e?‘ [ ;G? ,and
r 2
o™ (ify) = @pPexp{ % ©®

Here, p(yp,, ypj> is a label compatibility function that follows the
Potts model for cost assignments, which states that the cost is non-zero

only if the pixels are labeled differently. In other words, p ()'ps , ypj> =1if

(ypi # ypj), and 0 otherwise. For a binary segmentation task, this model

punishes similar pixels with different labels. Pairwise terms are calcu-
lated using two features involving Gaussian and bilateral filters, which
are instrumental in satisfying the similarity and proximity principles.
These principles suggest that pixels that are closely related in intensity
and proximity tend to be grouped together. 6,, 0, and 6, are the pa-
rameters for the Gaussian and bilateral filters that can be adjusted, and
o,V and w,® are the corresponding local weights.

The significance of closure principle in visual perception, while
challenging to encapsulate through local potential functions, is
approximated in the study by Ming et al. [79] via a series of localized
connectedness constraints. Within a segment’s terminal point, two kinds
of connectedness constraints are defined, each defined with a series of
linear inequalities:

e The Completion Constraint is characterized by the limitation that a
completion segment can only be activated if its adjacent broken
segment is also active, which requires the following inequality to be
satisfied: y;, < y;V(si € Sc) U (55 € Sp) € C.

e The Extension Constraint is defined by the condition that when a
broken segment is active, at least one neighboring completion
segment must also be active for possible extension. This is expressed
as the inequality: y;, < > y;,V(s; € Sc) U (s; € Sp) € CE.

These constraints can be represented in the pairwise term E, (Y, Y))
for segments with the following expression:

E, (YSN YS;) =M Z(siesc)u(sjesb)ed’ [(1 _ySJ')ysi ]
@

+ Z(slesc)u(x]esb)ecl‘ [}’st(l _‘ysi) ]

where M is a large constant, which is large enough to ensure that Eq. 1
results in a zero-probability configuration (i.e., P(Y|X) =
1/Z(X) exp{ — M} = 0) in the case that these inequalities are not
satisfied.

In line with the law of good figure, which generally favors simpler,
more coherent shapes, the higher-order term (Ej (Y, Yy;, Yy, ) ) is defined
to obtain the best possible label configuration that is grounded in the
domain expertise. Similar to the models in Ref. [22,79], different po-
tentials are utilized to define a higher-order Gibbs energy. In this work,
the higher-order term is represented as the sum of an interface potential
and a complexity potential:
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By (Y, Yy Yy, ) = &Y e i (o574, ) |

(8)
M
e Z(SﬁS:)U(S,.skesb) [WM <y5i"y5j1yk> ] )
where Qf and QM are global weights. The interface potential is defined
as:

43 (ysw.)'S,-aysk) = Z:Zl {w;nk;n (fi7fj7fk) ]_)’s,-}'s,-}’sk7 ©)

where of* are the local weights for k! (fi, fi» fk), which represent the
interface features. There are seven interface features, the first four of
which are obtained from Ref. [79], and an additional three are consid-
ered in this work. The initial four features are: (1) effective corner dis-
tance, optimized for capturing sharp turns in contours; (2) effective
smooth distance, designed for capturing smoother transitions between
segments; (3) angular completion, emphasizes geometric shapes
through the sum of angles; and (4) angular difference, useful for iden-
tifying parallel or nearly parallel segments. The final three features
pertain to the lengths of the two broken segments the one completion
segment that forms the clique. Finally, the complexity potential is given
by:

Wy <}'xi>ysjs)’k) = Z:Zl [a)ﬁk}n\/l[ (fivﬁvfk) ]YSgysj-.yskv (10)

where o} are the local weights for kjj; (fi, £ fk>, which includes two
features representing the global complexity. These two features are: (i)
kl(vl,), which is the total effective length of the connected segments, and

(i) k1(v21>’ which represents the angle deviation from the ideal curving
angle and the connection angle, effectively controlling the model’s
overall complexity.

The constraints introduced in Eq. 7 posit that y;and y;, can both be
active at the same time if and only if y, is also active, therefore
simplifying the higher-order term to:

A1) 5o
+ QMZ(xlesc)u(sj.skes,,) |:Zil (wl‘nfllkln\}') }yxf'

1D

which in turn allows framing the combinatorial optimization problem as
a MILP problem, for which the final energy function to be minimized
takes the form:

min (Q° € (prei’si Yu (y pi ) ’ ZP:WP}EYS; Pi<pj
o) 8 (75)] ) e S 00

K m 1.m
+ QMZ(S(ESt)U(S}\SkGSb) |:Zml (kaM) :|y5i ’

12

subject to y;, < ysV¥(si € S)U (sj € Sp) € C* and Vs < D5 YsV(si € Sc)U
(s7 € Sp) € CPB. Details pertaining to the implementation of pixel-based

and segment-based CRFs are provided in Supplementary Notes 4 and
5, respectively.

2.4. Tracing smooth paths

Building on the probabilistic image labeling achieved through the
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(a) Ideal Label Configuration

@ Completio

(b) Gaussian Cost Map
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(c) Lowest-cost Shortest Path

Fig. 3. A cost-based pathfinding algorithm. (a) The ideal label configuration with identified broken and completion segments, alongside curving angles. (b) The
Gaussian cost map with varying color intensities and specific cost values. The inset illustrates the different costs assigned to pixels drawn from a 2D exact Gaussian
distribution, based on the curving angle. (c) The lowest-cost shortest path is determined post-application of the A* pathfinding algorithm.
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Fig. 4. Computer vision model training and performance. (a) One of the original input images and its corresponding data augmentations. (b) Images from the
validation set, highlighting the computer vision ground truth (CVGT) and model-predicted fragmented segmentation masks. (¢) The model’s predictions on unseen
images. (d) Plots of the intersection-over-union (IoU) and dice similarity coefficient (DSC) metrics along with the loss function (1-DSC) across training epochs for
each fold.



D. Aksoy et al.

Hierarchical CRF method, the next step in ensuring seamless connec-
tivity involves tracing smooth, efficient paths. Existing methods like the
stochastic completion fields method [59,76] can trace smooth paths
between points, yet they lack guaranteed solutions and can be compu-
tationally intensive. Hence, in this work, where the identification of GBs
for subsequent chemical analysis is time-sensitive, a cost-based path-
finding algorithm is utilized to find the lowest-cost shortest path be-
tween the endpoints of a completion segment, denoted as the source and
the sink. Cost maps are generated using isolated points and curving
angles of each segment in the ideal label configuration, as shown in
Fig. 3a. Costs are derived from probability distributions based on the
natural curving angles of adjacent broken segments (Fig. 3b), aiding in
connectivity assumptions at interfaces. This method mirrors GBs’
energy-minimization tendency, favoring shorter, less costly paths
similar to how GBs naturally form by reducing their area (length in a
projection) to lower their energy state. The selected pathfinding algo-
rithm is the A* algorithm, a graph traversal and path search algorithm
[32] that employs a heuristic function, here chosen to be the Chebyshev
distance with 8-way directionality, with the rationale for this selection
being elaborated in Supplementary Note 1. This algorithm starts from
the source, moving towards the sink while tracking path and associated
cost. Paths are reconstructed by backtracking the lowest-cost shortest
paths identified by A*, as in Fig. 3c. These paths, shown in Fig. 3g,
connect broken segments in fragmented masks, resulting in refined
segmentation depicted in Fig. 3h, reflecting GBs’ natural energy-
minimizing behavior. Further details on the pathfinding algorithm can
be found in Supplementary Note 1.

3. Results

To demonstrate this methodology, fragmented segmentation masks
are generated using the trained computer vision algorithm. The anno-
tated images serve as ground truth for model training, labeled as CVGT
to differentiate from fragmented segmentation ground truth (FSGT).
CVGT assesses the computer vision model’s performance, while FSGT
evaluates segmentation refinement. To enhance the robustness and
generalizability of the model, data augmentation methods were care-
fully selected. Brightness adjustment is used to simulate variations in
illumination, Gaussian blur to mimic slight focus variations common in
microscopy, and rotation to ensure the model’s insensitivity to orien-
tation changes. These augmentations aim to produce a more versatile
and adaptable computer vision algorithm. A sample of these augmen-
tations is displayed in Fig. 4a. The trained model, described in the
Methods section, is then utilized to generate segmentation masks from
the input images. The model effectively delineates boundaries in both
validation and unseen images, as shown in Figs. 4(b) and (c), and in
comparisons between CVGTs and predicted masks. It successfully gen-
erates segmentation masks for images not included in the training,
performing better on images with fewer atomic features and pronounced
contrast.

In this study, a 3-fold cross-validation strategy was employed during
network training over 50 epochs. The aggregated metrics across folds
indicate an average training IoU of approximately 0.83 and a corre-
sponding validation IoU near 0.67, while the training DSC approached
0.91 and the validation DSC stabilized at around 0.79, as shown in
Fig. 4d. These similar performance values across folds reflect that the
model is reliably capturing the key features of the grain boundaries and
generalizing well to unseen data. Specifically, the consistency of these
metrics across different splits suggests that the model is not overly
sensitive to the specific partitioning of the data, which is a strong indi-
cation of robust learning rather than overfitting.

In addition, an alternative training approach was explored that
consolidated all training data and extended the training duration.
Although this method yielded higher training scores—a result of the
more intensive training—the validation scores remained comparable to
those of the cross-validation model. While both approaches deliver
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similar validation performance, the cross-validation model confirms the
robustness of the segmentation pipeline, and the alternative approach is
particularly valuable for demonstration purposes because it produces
sharper, more detailed segmentation outputs. This enhanced detail fa-
cilitates a clearer presentation of the efficacy of the subsequent post-
processing stage in rectifying fragmented masks.

The performance of the model aligns with benchmarks in thin seg-
mentation mask tasks, comparable to a DSC of 0.7 [34] reported by
Jahangard et al. for retinal blood vessel segmentation. Given the focus of
this work on refining the fragmented segmentation mask, further opti-
mizations like hyperparameter tuning are not pursued. The model’s
predictions on full-resolution images, critical for analyzing detailed
material structures potentially lost or distorted in lower resolutions,
demonstrate its efficiency in processing high-resolution images.

On the fragmented segmentation masks, pixel-based CRFs are
applied, followed by the creation of the FSGT. FSGT is formed by
manually labeling each identified completion and broken segment,
following specific principles including consistent judgement across all
images, marking the connection segments only if the natural curvatures
of the broken segments appear to intersect and ensure non-occluding
connections. These FSGTs aid in learning optimal weights and evalu-
ating the proposed method’s performance. In a sample image, Fig. 5a
displays all segments identified by the algorithm, Fig. 5b the manually
labeled FSGT, and Fig. 5c the best solution from the differential evolu-
tion algorithm, which corresponds to the minimum difference in label-
ing configurations between the FSGT and MILP solution. This accuracy is
calculated as the percentage of correctly classified segments (i.e., true
positives and true negatives) from the total number of viable segments.
Insets in Fig. 5 magnify portions where the CRF accurately predicts most
segments, though as noted, some discontinuities may persist where the
probabilistic evidence for a connection is insufficient. Additional
magnified views are shown in Fig. S2. Fig. 5¢ illustrates newly identified
grains from connected segments, enhancing segmentation accuracy, as
the subsequent watershed algorithm identifies grains by continuous
lines forming the boundary of closed geometric shapes.

3.1. Watershed segmentation

A marker-based watershed segmentation technique, based on
geographical watershed principles [16,62], is employed for image seg-
mentation. This method converts the image into a topographical map
with pixel values representing altitudes, applying the watershed trans-
form to create catchment basins associated with distinct markers. The
basin boundaries, as shown in Fig. 6a, segment the image into distinct
regions or grains. However, broken lines in the mask, such as those
visible in Fig. 6a, can result in suboptimal segmentation. The grains in
these plots appear as randomly colored shapes, except for the region
depicted in the insets, where grain colors are matched manually for
better visualization. More details about this method can be found in
Supplementary Note 2. This segmentation is applied to three image
types: (1) the original segmentation mask before post-processing
(Fig. 6a), (2) the FSGT (Fig. 6b), and (3) the CRF solution (Fig. 6c).
The figure shows that broken segments without viable completion seg-
ments are removed, and sections are smoothly connected, thereby
enhancing segmentation. Insets in Fig. 6 demonstrate how the connec-
tions shown in Fig. 5c results in better grain segmentation, impacting the
statistical representation of GB networks through improvements in grain
shape and area. Additional magnified views are shown in Fig. S3. These
segmented images are then used to evaluate the performance of the post-
processing procedure.

3.2. Performance evaluation
In the segmentation performance evaluation, the post-processing

procedure consistently improved various metrics, as shown in Table 1.
Pixel accuracy, measuring correctly classified pixels against the total
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(a) All Viable Segments
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(b) Fragmented Segmentation (c¢) CRF Predicted Label
Ground Truth (FSGT)

Configuration

Training set: 462 of 577 segments correctly labeled (~80% accuracy).
Validation set: 3090 of 3937 segments correctly labeled (~*79% accuracy).

Fig. 5. Detailed examination of the segment-based CRF labeling. (a) All viable segments identified by the algorithm with broken (red) and completion (yellow)
segments. (b) The manually labeled fragmented segmentation ground truth (FSGT). (¢) The CRF predicted label configuration, illustrating the optimal segment
connections post-differential evolution algorithm. Insets in each subplot offer a magnified view of selected areas, elucidating the finer details of segmentation. The
image scale is consistent with that shown in Fig. 4b. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

number, increased by 0.18 % in the validation set from an already high
baseline of 0.997 to 0.999, indicating near-perfect classification accu-
racy. To better assess segmentation masks, metrics such as IoU and DSC
are often employed [19]. IoU and DSC metrics exhibited an increase of
9.15 % and 5.19 % in the validation set due to post-processing,
respectively. These improvements bring the final IoU and DSC values
to 92.5 % and 96.1 % representing significant enhancements in seg-
mentation accuracy, particularly for tasks involving complex grain
structures. Calculation details for these metrics are provided in Sup-
plementary Note 3. Additionally, grain-specific metrics, like the number
of grains, Ng, and average grain size, Vg, also demonstrated notable
improvements, detailed in Table 2. These enhancements were calculated
as percentage improvements over the FSGT baseline, based on their
relative differences.

An analysis of confusion matrices is presented in Fig. 7a for the
training set and Fig. 7b for the validation set. In the training dataset, the
CRF correctly predicts 462 out of 577 segments, achieving approxi-
mately 80 % accuracy. For the validation set, it accurately predicts 3090
out of 3937 segments, a 79 % success rate. Regarding time efficiency,
manual labeling to create the FSGT is a necessary but time-intensive
prerequisite, taking roughly 41 min per 1000 segments. In contrast,
the automated CRF method labeled 1000 segments in about 15 milli-
seconds on an Intel Core i7-12700K 12-Core Processor. This five-order-
of-magnitude speed-up is not intended to diminish the crucial role of
manual annotation for training and validation, but rather to highlight
the framework’s potential for high-throughput analysis where such
manual intervention is infeasible. Additionally, weight learning, needed

once per application, completes in around 47 min. For fully automated
STEM imaging and spectroscopic data acquisition in GB network
chemical analysis, the CRF’s rapid processing rate would enable time-
efficient implementation needed to mitigate the effects of microscope
instability such as specimen drift and lens defocus.

A novel metric for grain alignment is developed to overcome the
limitations of traditional metrics in this specific segmentation context.
This metric computes the average absolute difference between the areas
of closely aligned regions in two labeled images, identified based on the
proximity of their centroids. A smaller value for grain alignment in-
dicates a higher degree of similarity in terms of grain size between the
two images, making it an effective measure for comparing segmented
regions, especially in the context of thin segmentation masks. Significant
improvements in mean grain alignment, up to 78 % in training and 51 %
in validation sets, are observed post-segmentation. These enhancements
are critical as they significantly enhance the accuracy of statistical
representation of grain size and location, leading to more precise anal-
ysis of GB networks, especially in densely packed or intersecting
boundary regions.

4. Discussion
4.1. Beyond conventional metrics
Pixel accuracy focuses on the count of foreground and background

pixels and neglects their spatial distribution, which limits its utility in
single-pixel wide masks. In cases where discarded broken segment pixels
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(a) Before Post-processing (b) Fragmented Segmentation (c) After Post-processing
Ground Truth (FSGT)

Training set: Improved mean grain alignment by ~78%.
Validation set: Improved mean grain alignment by ~51%.

Fig. 6. Image segmentation using marker-based watershed technique. (a) Original segmentation mask before post-processing with visible broken segments. (b)
Fragmented segmentation ground truth (FSGT) image that highlights the connections between the disconnected segments. (¢) CRF solution corresponding to the
optimal label configuration after post-processing, showing removal of dangling broken segments and smoother connections between sections. The grains are
randomly colored, except for the insets. Insets in each subplot provide a magnified view, emphasizing the differences in grain identification and segmentation
performance. The image scale is consistent with that shown in Fig. 4b.

Table 1
Comparison of segmentation performance evaluation metrics for both training and validation sets, highlighting the improvements achieved through post-processing.
Metric Training set Validation set
FSGT /before* FSGT /after” Percent change FSGT /before* FSGT /after” Percent change
Accuracy 0.998 0.999 0.18 % 0.997 0.999 0.18 %
ToU 0.911 0.979 6.78 % 0.833 0.925 9.15%
DSC 0.954 0.989 3.58 % 0.909 0.961 5.19 %
Precision 0.929 0.996 6.66 % 0.853 0.967 11.36 %
Recall 0.979 0.983 0.39 % 0.973 0.955 -1.77 %
Grain alignment 777.8 174.2 77.6 % 4062.7 2007.7 50.6 %

The bold values indicate the percent changes in the metrics.
* Metrics calculated by comparing the FSGT and the segmentation mask before or after post processing.

Table 2
Metrics specific to grain attributes for both training and validation sets, illustrating the number of grains, Ng and average size of identified grains, Vg and their
respective percent changes after post-processing.

Metric Training set Validation set

FSGT* Before* After” Percent change FSGT* Before* After” Percent change
Ng 904 797 893 10.62 % 1518 1206 1520 20.69 %
Ve 4309.0 4812.8 4429.2 8.90 % 10,864.0 13,293.4 11,180.7 19.45 %

The bold values indicate the percent changes in the metrics.
" Metrics calculated for different segmentation masks, including the FSGT and the segmentation mask before and after post processing.

equal the number of added completion segment pixels, pixel accuracy post-processing affirm their utility in assessing the alignment of seg-
remains unchanged, potentially misrepresenting changes in spatial dis- mentation masks with ground truth.

tribution. While high pixel accuracy may suggest superior performance, Table 2 shows post-processing enhancements in actual segmented
it can obscure spatial distribution nuances. IoU and DSC, although more grains. Both the number of identified grains and average grain size align
nuanced, are sensitive to minor spatial variations, which is a notable more closely with the ground truth post-processing, signifying not only
limitation in thin masks. Nevertheless, improvements in these metrics improved alignment but also enhanced grain segmentation attributes.

10
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Fig. 7. Detailed evaluation metrics for segmentation performance.
Confusion matrices illustrating the alignment of predicted segment labels with
true labels for (a) the training set, and (b) the validation set. ‘active’ and
‘inactive’ denote segments identified as kept or discarded, respectively, high-
lighting the model’s classification efficacy.

These advancements indicate a more accurate representation of grain
size distribution and density, crucial for assessing mechanical and
physical material properties. GBs considerably affect aspects like crack
propagation, corrosion resistance, and mechanical strength, high-
lighting the importance of these improvements.

Table 1 and the confusion matrices in Fig. 7a and b reveal a decrease
in recall for the validation set, suggesting the model’s reduced sensi-
tivity in identifying active segments post-processing. This could stem
from unseen data or minor overfitting during training. These metrics
primarily assess the model’s proficiency in correctly labeling pixels or
segments as active or inactive. However, in grain segmentation tasks
that emphasize not only accurate pixel classification but also the
morphological characteristics of the grains, such metrics may not fully
capture the performance.

Addressing limitations in conventional metrics, a new metric, grain
alignment, is proposed for evaluating segmentation performance. This
metric involves identifying centroids of corresponding regions in two
labeled images. For each grain in the first image, the closest centroid
grain in the second image is determined, ensuring spatial proximity-
based comparison. The absolute differences in the areas of these
closely aligned regions are calculated and averaged to gauge size simi-
larity, offering a robust measure for segmented region accuracy,
particularly in thin masks. While this approach provides a robust metric,
it’s important to note the mean grain alignment metric difference be-
tween the training and validation dataset can be attributed to a few
considerations. This discrepancy arises because accurately identifying
grains requires all constituting lines to be connected. In fragmented
images, unconnected lines can lead to incorrect grain identification,
merging multiple grains into a single large one, and thus affecting the
grain count and spatial distribution. The post-processing method rec-
tifies this by connecting fragmented boundaries; by successfully closing
a previously open boundary with a completion segment, a single,
incorrectly merged grain is correctly partitioned into two or more
distinct grains. This partitioning effect is the primary reason for the
observed increase in the number of grains (Ng) post-processing
(Table 2), bringing the count closer to the ground truth. Additionally,
the post-processing’s single-pass might leave some segments
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incomplete. This difference is more indicative of the validation set’s
complexities rather than a general limitation of the method. By identi-
fying closely situated grains as part of the same boundary network, this
method precisely represents microstructures, essential for accurate
material behavior prediction, demonstrating its utility despite the noted
dataset-specific challenges.

In addition to the demonstrated accuracy, the CRF’s remarkable time
efficiency is particularly valuable in materials science applications
requiring real-time analysis. This rapid segmentation capability, in stark
contrast to the time-consuming manual labeling process, allows for
immediate GB identification post-image acquisition. Crucial in coun-
tering issues like drift in TEM imaging, real-time processing ensures
analyses are based on accurately segmented, current images. This not
only boosts analysis reliability but also enables dynamic, in-situ exper-
imentation and observation in materials science, where monitoring
changes over time and under varying conditions is essential.

4.2. Comparing standard and specialized ground truths

The CVGT and FSGT evaluate distinct aspects of segmentation, tar-
geting specific criteria. The CVGT focuses on essential features for initial
computer vision training, whereas the FSGT addresses specialized grain
segmentation requirements, including unique post-processing needs
such as continuous grain lines. Consequently, comparing post-processed
results directly with the CVGT is inherently flawed. The CVGT, serving
as a baseline for assessing computer vision algorithm performance,
varies across images and is contingent on the computer vision output’s
quality. Therefore, it becomes an unstable and unreliable baseline for
evaluating the post-processing procedure’s performance, which inher-
ently refines and alters the computer vision algorithm’s initial
segmentation.

Post-processing impacts metrics like IoU and DSC, influenced by the
initial model’s alignment with the CVGT. Generally, good alignment
enhances these metrics post-processing, whereas poor alignment di-
minishes them. For instance, in Table 1, using the CVGT as ground truth,
IoU and DSC in the training set decrease by 0.12 % and 0.21 %,
respectively, despite a 78 % improvement in grain alignment. This in-
dicates that post-processing accentuates the initial segmentation’s
adherence to the CVGT. Therefore, to isolate the specific influence of the
post-processing procedure, a comparison with the FSGT is essential.
Additionally, the subjectivity in annotating GBs complicates evalua-
tions. Consistency in CVGT and FSGT annotations is difficult due to
specific grain characteristics, introducing variability in ground truths
and affecting metrics. This underlines the limitations of relying solely on
CVGT for evaluation and the importance of including the FSGT for
comprehensive assessment.

4.3. Towards advanced segmentation and cross-domain applications

Factors like hyperparameter optimization, model choice, and more
training data can enhance baseline segmentation accuracy. Post-
processing adjustments involve hyperparameters like maximum
segment distance for selecting viable segments, field size, and path-
finding costs. Iteratively optimizing these hyperparameters is recom-
mended for improved robustness and accuracy. This work also paves the
way for joint CRF and CNN training. End-to-end trainable models, such
as those that model CRFs and their feature functions as recurrent neural
networks, can be appended to CNNs for training [83], which are ex-
pected to yield even higher segmentation accuracies [8].

In this study, T-junctions—connections between isolated points and
segments—are not included, despite constituting about half of the
training set’s segment candidates. Their inclusion is expected to improve
segmentation performance [79], offering a fuller network representa-
tion. Beyond the seven interface features examined in this study, future
iterations could integrate additional grain-related features, such as the
Mullins grain growth model [48] to inform the algorithm about
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potential GB movements for enhanced predictive accuracy. Combining
electron diffraction with optical reflectance measurements to estimate
GB character [64], and incorporating crystallographic orientation data,
can provide detailed grain physical properties, aiding in segmentation
refinement. Electron diffraction and optical reflectance could enhance
GB identification, while crystallographic orientation might help differ-
entiate grain types or phases. Further segmentation enhancement might
come from local neighborhood analysis using image features like
brightness, color, texture [47], and the intensity gradient along
completion segments [20]. When the original image is accessible,
contrast differences between grains and texture analyses could be
employed between the original and the predicted masks [28]. This can
link GB microstructure with material properties, aiding in predicting
mechanical, thermal, and electrical behaviors [15].

Implementing this post-processing procedure facilitates high-
throughput experimental pipelines with reduced human supervision
requirements, while maintaining comparable accuracies. S(TEM) im-
ages can be subjected to computer vision algorithms and subsequently
analyzed using complementary methods such as electron diffraction and
spectroscopies in a continuous pipeline. Fractional probabilities ob-
tained from computer vision outputs can serve as unary terms in pixel-
based CRFs, enhancing predictions and enabling confidence level as-
signments to each segment for targeted experiments [39].

Statistical distribution information, such as average grain size, could
be obtained and leveraged to improve segmentation performance.
Outlying grains, indicative of abnormal growth, could be flagged for
operator review. The post-processing procedure makes such data
available to the operator, alongside candidate segments and their
associated costs, thus facilitating a human-in-the-loop approach while
expediting the process without compromising fidelity. The segment-
based CRF approach exhibits strength in detecting closed contours in
noisy environments [79], a capability that can be harnessed to identify
interfaces even in the presence of other image features like nano-
precipitates or atomic details from S(TEM) without an additional clas-
sifier [42].

Furthermore, the general applicability of this framework extends to
less-ideal imaging conditions often encountered in experimental set-
tings, such as in-situ microscopy. While the current work utilized high-
quality STEM images, the post-processing method is fundamentally
designed to correct fragmented masks, which are characteristic of noisy
or low-contrast images. Similarly, for thicker samples or alloys exhib-
iting complex contrasts from features like segregation-induced com-
plexions, the initial CNN segmentation may be challenged. However, the
CRF-based refinement, which operates on the geometric properties of
the predicted mask, remains robust. It enforces structural priors like
continuity and closure, helping to reconstruct the grain boundary
network even when local pixel evidence is ambiguous. Future work
could enhance this by incorporating image features specifically sensitive
to such complex contrast variations into the CRF’s potential functions.

While the presented work focuses on grain boundaries, the core
methodology is adaptable to other domains. The strength of the hier-
archical CRF lies in its general framework of applying perceptual
grouping rules to refine fragmented line networks. The utility of thin
segmentation masks extends beyond the domain of materials science,
finding applications in biomedical imaging for narrow or elongated
structures. Areas of application include retinal blood vessel segmenta-
tion [34], neuronal structure analysis [33], coronary artery delineation
in cardiac MRI [17], tendon segmentation in musculoskeletal imaging
[35], lymphatic system studies [41], and angiography for small blood
vessels [82]. However, the specific feature functions and learned
weights are necessarily domain-specific. Applying this method to other
problems, would require retraining on domain-specific ground truths
and could benefit from designing features tailored to the unique char-
acteristics of those images. The methodology introduced in this work
offers a new perspective and serves as a resource for other researchers,
setting the stage for further advancements in segmentation mask
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optimization for interconnected line networks.
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