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A B S T R A C T

Automated detection of grain boundaries in electron microscope images of polycrystalline materials could help 
accelerate the nanoscale characterization of myriad engineering materials and novel materials under scientific 
research. Accurate segmentation of interconnected line networks, such as grain boundaries in polycrystalline 
material microstructures, poses a significant challenge due to the fragmented masks produced by conventional 
computer vision algorithms, including convolutional neural networks. These algorithms struggle with thin 
masks, often necessitating post-processing for effective contour closure and continuity. Previous approaches in 
this domain have typically relied on custom post-processing techniques that are problem-specific and heavily 
dependent on the quality of the mask obtained from a computer vision algorithm. Addressing this issue, this 
paper introduces a fast, high-fidelity post-processing technique that is universally applicable to segmentation 
masks of interconnected line networks. Leveraging domain knowledge about grain boundary connectivity, this 
method employs conditional random fields and perceptual grouping rules to refine segmentation masks of any 
image with a discernible grain structure. This approach significantly enhances segmentation mask accuracy by 
correctly reconstructing fragmented grain boundaries in electron microscopy images of a polycrystalline oxide. 
The refinement improves the statistical representation of the microstructure, reflected by a 51 % improvement in 
a grain alignment metric that provides a more physically meaningful assessment of complex microstructures than 
conventional metrics. This method enables rapid and accurate characterization, facilitating an unprecedented 
level of data analysis and improving the understanding of grain boundary networks, making it suitable for a 
range of disciplines where precise segmentation of interconnected line networks is essential.

1. Introduction

Integrating computer vision with electron microscopy has signifi
cantly enhanced efficiency in materials science by speeding up tradi
tionally laborious and time-consuming processes [71]. The 
advancement of (scanning) transmission electron microscopy ((S)TEM) 
is pivotal in examining grain boundary (GB) networks and other 
microstructural features in hard materials like metals and ceramics [72]. 
These techniques yield insights into structural characteristics such as 
(dis)order [75], dislocations [56], phase transformations and GB 
segregation [53]. GB networks, often statistically represented [74], 
require extensive data for analysis. Revealing large-scale information 
like average grain sizes facilitates high-throughput experiments [80] 
aimed at elucidating local GB properties [72] and atomic (dis)order 

[75]. However, developing these techniques is challenging due to the 
complex nature of grain structures and their boundaries in ceramics, 
metals, and composites [68,69], involving issues like managing over
lapping grains [49] and deciphering defects of different dimensionality 
such as GBs, triple junctions, and nodes [6]. This complexity is accen
tuated when analyzing GB networks, influenced by factors like crystal
lographic orientations, interfacial segregation, and varied local atomic 
environments, affecting the mechanical, electrical, chemical, and mag
netic behavior of materials [1–3,5,10–13,37,51,63,78]. GBs range from 
ordered high-symmetry structures to high-energy disordered configu
rations [24], with networks exhibiting intricate relationships due to 
energetic competition between interfacial planes, atomic sites, and 
solute-solute interactions [4,26,70]. Moreover, local ordering and local 
hardening can be influenced by solute segregation to GBs [6, 45]. 
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Therefore, developing predictive techniques is challenging, considering 
the multifaceted role of GBs where local atomic environments, segre
gation behaviors, and solute interactions are closely connected. This 
complexity often results in (S)TEM image contrasts, posing a unique 
challenge for conventional segmentation methods in identifying GBs.

Addressing this, semantic segmentation – a computer vision strategy 
categorizing each pixel into a class [46] – emerges as a promising 
approach for autonomous grain segmentation. Historically, two tech
niques have been prominent: traditional image processing and modern 
computer vision techniques. Traditional methods focus on low-level 
image details, using techniques like thresholding [54], morphological 
processing [21], edge detection with preset filters [29], unsupervised 
machine learning clustering [73], watershed transformation [62], and 
region-growing [61]. Their effectiveness often depends on image qual
ity, influenced by factors like resolution, color balance, brightness, and 
gradient similarity [44]. Conversely, modern computer vision ap
proaches, particularly convolutional neural networks (CNNs), provide a 
more sophisticated, high-level grain representation [23,27,55,58]. Ar
chitectures like DeepLab [18], Mask R-CNN [30], and U-Net [60] are 
employed for their adaptability to different image resolutions and 
consistent segmentation capabilities.

However, CNNs’ large perception fields limit their ability to produce 
accurate pixel-level labels [46], which poses a problem in an inter
connected grain network where the segmentation mask is a few pixels 
wide with a label assigned to each pixel (e.g., 1: GB, 0: grain interior). 
Metrics like intersection-over-union (IoU) and Dice similarity coefficient 
(DSC) are used to assess the alignment of predicted masks with ground 
truth. But, in thin masks, even minor 1-pixel deviations significantly 
affect accuracy [19]. Researchers have explored various categories of 
post-processing methods to enhance the segmentation accuracy of thin, 
interconnected line structures like GBs. One prominent category in
volves probabilistic models, which refine initial segmentation masks by 
enforcing spatial consistency. For instance, one such approach has been 
successfully applied to road network extraction from aerial imagery by 
smoothing fragmented predictions and maintaining continuity [9]. This 
was achieved through an iterative search process, where a CNN-driven 
decision function directly generated the road network graph from the 
CNN’s output. In another application, Dulau et al. [25] demonstrated 
this by improving the continuity of retinal blood vessel maps, by 
removing misclassified pixels erroneously identified as retinal vessels, 
and by rejoining vessel segments that are correctly identified yet remain 
separated. However, these techniques typically rely on heuristic rules 
and can struggle with noisy or incomplete initial predictions.

Morphological and perceptual grouping approaches represent 
another prevalent set of post-processing methods. Morphological oper
ations, such as dilation and skeletonization, have been widely used for 
tasks like cleaning up segmentation masks or connecting small gaps in 
biomedical vessel segmentation [40]. Perceptual grouping methods, like 
tensor voting, have been employed effectively to reconnect fragmented 
segments in pavement crack detection [81]. Despite their utility, these 
methods often require extensive manual tuning of parameters, limiting 
their general applicability across diverse datasets. In contrast, model- 
specific integrated post-processing methods, like Li et al. [42], have 
demonstrated remarkable accuracy by incorporating generative adver
sarial networks and multi-task learning explicitly designed for GB seg
mentation. Furthermore, Patrick et al. [52] introduced an automated 
grain boundary detection framework based on the U-Net architecture for 
BF TEM images that achieves high segmentation accuracy with minimal 
manual intervention, improving processing throughput. Yet, the 
specialized nature and reliance on tailored parameters significantly 
restrict their general use beyond specific materials or image types. Main 
challenges include connecting adjacent pixels and removing isolated 
ones, relying on user-defined thresholds. These methods often miss 
crucial constraints related to GBs, essential for accurate segmentation of 
complex grain structures.

Here, this work aims to address the gap in semantic segmentation for 

(S)TEM images of polycrystalline materials by introducing a versatile 
post-processing method to refine interconnected GB network masks. 
This method, based on insights into GB connectivity [43] and the 
interconnected nature of GB networks [14], is designed for broad 
applicability across different crystalline materials. At its core, it employs 
segmentation masks from computer vision models to generate condi
tional probability maps using conditional random fields (CRFs), 
bridging gaps left by CNNs. The required feature functions for CRFs are 
selected based on perceptual grouping rules [50]. Applicable to any 
crystalline material with discernible grain structure, and adaptable to 
other domains with interconnected line networks, this method can be 
used as a post-processing step for various grain segmentation masks 
from imaging systems and vision algorithms, enabling real-time seg
mentation refinement. It marks a significant advancement for materials 
scientists, allowing rapid and precise GB segmentation in complex mi
crostructures with poorly resolved boundaries, and enabling previously 
inaccessible large-scale data analysis, greatly enhancing statistical rep
resentation of GB networks.

2. Methods

The systematic approach for grain segmentation refinement, aimed 
at addressing the limitations of conventional computer vision algo
rithms, is outlined in the subsequent sections. Initially, a computer 
vision model is developed, serving as a preliminary step to generate 
segmentation masks. These thin segmentation masks which include 
fragmented sections form the foundation for applying the proposed hi
erarchical CRF method. This method, along with perceptual grouping 
principles, is introduced to address various aspects of grain boundary 
properties and connectivity. For a given image, the solution that maxi
mizes the conditional probability obtained from the hierarchical CRF 
corresponds to a label configuration that determines points of connec
tion. Subsequently, a novel path tracing algorithm is introduced, 
designed to connect fragmented segments using the label configuration 
derived from the CRF predictions.

2.1. Computer vision model development

The input dataset for model training consisted of high-angle annular 
dark field and annular bright field STEM images recorded with a Nion 
UltraSTEM100 aberration-corrected STEM operating at 60 kV. The 
material is an electrically conducting polycrystalline oxide, fluorite 
Pr0.1Ce0.9O2, synthesized by pulsed laser deposition as a layer of nearly 
uniform thickness (~30 nm) atop an amorphous silicon nitride free 
standing substrate.

The images in the dataset are digitized and manually annotated by 
tracing GBs by hand using a digital drawing tablet, a process widely 
utilized in materials science, to assess grain sizes and network structures 
for subsequent analysis of material properties. GBs marked on the im
ages constitute the computer vision ground truth (CVGT), serving as 
targets for model training. To minimize human operator bias, both 
annular dark field and bright field images of the same areas were an
notated at different times. Regions marked as interfaces in both image 
types reinforce the trained model’s predictions of interface pixels.

A pre-processing pipeline is implemented to enhance data diversity 
and simulate realistic experimental conditions. The dataset is initially 
partitioned at the level of the original images into training and valida
tion sets using a 70–30 split. Each image is subsequently subdivided into 
non-overlapping patches of 512 × 512 pixels. Each patch typically 
contains approximately 64 grains, capturing the inherent repetitive 
microstructural features of the material.

To further improve model generalization and simulate experimental 
variability, an augmentation pipeline is applied exclusively to the 
training patches. This pipeline performs random brightness adjustments 
(factors ranging from 0.8 to 1.2), Gaussian blurring (with sigma values 
between 0.5 and 1.5), and rotations (between − 45◦ and 45◦). By 
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applying 20 random augmentations per training patch, the effective 
number of training samples is expanded to 4480, while the validation set 
remained unaltered at 144 patches to ensure an unbiased evaluation of 
model performance.

A computer vision algorithm for image segmentation is developed 
using a modified U-Net architecture [60], with VGG16 model [66] 
serving as the encoder backbone. This architecture, effective for varying 
image resolutions, features a symmetric encoder-decoder structure [60] 
with skip connections to preserve key details lost during downscaling 
[31]. It consists of a contracting path capturing low-level features while 
reducing spatial size and increasing channels, and an expanding path 
that upscales these features to original size, reducing channels and 
capturing high-level features for accurate segmentation [60]. The model 
includes four decoder blocks, each with a 2D convolution layer matching 
the corresponding encoder layer’s channels, followed by concatenation 
with the encoder’s skip connection and two convolutional blocks with 
batch normalization and ReLU activation. The final output uses a sig
moid function. Compiled with Adam optimizer [36] with a learning rate 
of 10− 4 and a custom loss function (1 − DSC), the model employs early 
stopping based on validation loss improvement, monitoring metrics like 
DSC, IoU and binary accuracy.

The objective of this work is not to achieve the highest possible 
segmentation accuracy but rather to demonstrate that the post- 
processing model is learning meaningful features rather than over
fitting. To this end, no extensive hyperparameter tuning or further 
optimization techniques, such as learning rate scheduling, ensemble 
methods, or advanced regularization, were pursued. Instead, a 3-fold 
cross-validation strategy is employed on the augmented training set to 
robustly assess the model’s performance. This approach ensures that the 
model achieves a good enough performance level, with stable validation 
results indicating that it is effectively capturing the key features of the 
GBs without overfitting.

2.2. A hierarchical CRF architecture

When labeling sequence is critical, such as for interface pixels, CRFs 
emerge as a versatile tool. As a discriminative model, CRFs calculate the 
conditional probability of a pixel or segment having the same label given 
a sequence of observations [67]. CRFs require feature functions, math
ematical representations of feature relationships [67]. An essential 
characteristic of CRFs, rooted in their Gibbs distribution formulation, is 
the concept of conditional independence. This implies that two pixels or 
segments without a direct interaction (as defined by the CRF graph 
structure) become conditionally independent once the state of their 
neighborhoods is fixed. Thus, distant pixels, though possibly globally 
correlated through intermediate connections, are directly independent 
in the conditional sense. Practically, this means the CRF explicitly 
models local and selected long-range interactions, making computa
tional complexity manageable while preserving meaningful global 
coherence.

To incorporate domain knowledge accompanying the CRF method, 
the feature functions can be selected based on perceptual grouping 
principles. These principles, derived from Gestalt laws of perceptual 
organization, describe how humans intuitively perceive and interpret 
the visual world [50] and are relevant to grain segmentation refinement, 
as illustrated in Fig. 1. Key principles include: 

• The Law of Proximity, indicating that elements close together are 
perceived as a group. In Fig. 1a, clustered dots exemplify this, aiding 
in identifying nearby pixels or segments as part of the same GB, 
especially areas of closely packed or intersecting boundaries.

• The Law of Similarity, where similar elements are seen as related. 
Fig. 1b shows this with dots of the same color and shape, grouping 
pixels or segments with similar characteristics for continuous GB 
identification.

• The Law of Closure, involving the mind’s tendency to complete 
incomplete figures, as in Fig. 1c. This helps in filling gaps in GB 

Fig. 1. Overview of the utilization of the Gestalt principles of perceptual grouping. (a) Proximity, (b) similarity, (c) closure, (d) good figure, and (e) continuity 
principles are satisfied through the use of (f) pixel-based CRF, and (g) segment-based CRFs resulting in (h) a refined segmentation. Each subplot provides a distinct 
visualization or method that contributes to the overarching theme of the paper, the robust analysis of GB networks.
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networks that appear broken, addressing challenges posed by poorly 
resolved and complex structures in TEM images.

• The Law of Good Figure (or Prägnanz), where complex images are 
perceived in their simplest form, as seen in Fig. 1d. This aligns with 
GBs’ tendency to minimize energy by adopting simpler shapes, 
reflecting the natural formation and evolution of GBs in materials.

• The Law of Continuity, favoring smooth patterns. Fig. 1e demon
strates elements aligned in a line or curve as a cohesive group, 
essential for maintaining continuous and smooth paths consistent 
with the physical properties of grain structures.

Fully-connected independent pixelwise classification, often leading 
to patchy segmentation masks due to disregarding pixel relationships, is 
computationally demanding [8]. CRFs are preferred in such contexts as 
they effectively incorporate spatial relationships between pixels using 
pairwise costs. Early models primarily utilized grid graphs for defining 
these costs, which restricted information transfer among adjacent pixels 
[65]. However, the introduction of DenseCRF architectures allowed for 
fully connected graphs and more expressive pairwise potentials [22,38]. 
Higher-order CRFs for contour completion bring three key benefits to 
grain segmentation: (i) they foster label continuity among spatially and 
intensity-wise close pixels, (ii) facilitate modeling of long-range in
teractions, and (iii) use linear inequalities for modeling extension and 
continuity constraints.

In this work, a hierarchical methodology for object recognition and 
segmentation is introduced, combining pixel-based and segment-based 
definitions synergistically. The novelty of this approach lies in its 
hypergraph architecture, which integrates a DenseCRF for low-level 
pixel features with a higher-order, segment-based CRF that enforces 
domain-specific knowledge through perceptual grouping rules. This 
synergistic combination allows the model to refine fragmented bound
aries by considering both local pixel evidence and global structural 
coherence, a capability not explicitly present in standard DenseCRF or 
higher order CRF models alone. The architecture is designed as a 
hypergraph, with vertices as individual pixels and hyperedges as seg
ments. Inter-segment connections are construed as edges between 
hyperedges. Initially, a DenseCRF architecture [38] processes low-level 
pixel features (Figs. 1(a), (b), and (f)), which then inform the higher- 
level segment-based features, as illustrated in Figs. 1(c)-(e), and (g). 
This layered strategy allows for the integration of both local and global 
information, adhering to perceptual grouping principles.

The conditional probability of segments, which describes the prob
ability distribution over all possible label configurations, is determined 
by minimizing Gibbs energy, comprising unary, pairwise, and higher- 
order terms. The unary potential encodes the likelihood of individual 
pixels belonging to specific segments, either complete or broken. This 
potential is derived from the pre-trained CNNs that provide scores for 
each pixel, essentially constituting an initial coarse-grained classifica
tion. Local consistency is subsequently enforced through edge- 
preserving bilateral and Gaussian blur filters, yielding perceptually 
coherent regions by evaluating neighboring pixels’ features like color 
and proximity, as shown in Figs. 1(a) and (b). This effectively distin
guishes segments in densely packed GBs, with non-conforming pixels 
eliminated, depicted in Figs. 1(a), (b), and (f) with red circles. Subse
quently, a graph-based technique is employed to identify completion 
segments, which represent potential connections between broken seg
ments. Due to computational limitations, only a subset of these 
completion segments, selected based on predetermined criteria, are 
deemed viable segments for further analysis. The various segment types 
are visually differentiated in Fig. 1c, with complete, broken, and 
completion segments shown in white, red, and yellow, respectively.

The pairwise potential, designed to capture long-range interactions, 
functions effectively on identified segments to maintain global consis
tency. It enforces completion and extension constraints, as described in a 
previous contour completion model [79], aligning with the principle of 
closure illustrated in Fig. 1c. The completion constraint activates a 

completion segment only when its adjacent broken segment is active. 
Simultaneously, the extension constraint ensures that an active broken 
segment has at least one neighboring active completion segment, pre
serving the continuity and integrity of the GB structure.

A higher-order potential incorporates specific visual characteristics 
like contour sharpness, smoother segment transitions, angular differ
ences between segments, and segment lengths. The model’s complexity 
is managed by considering additional features such as the total effective 
length of connected segments and the angular deviation from ideal 
connection angles. This optimizes simpler, more stable GB forms, 
adhering to the law of good figure, reflecting the natural evolution of 
GBs to minimize energy and simplify complex structures for perceptual 
coherence, as shown in Fig. 1d.

In this composite architecture, the hypergraph method efficiently 
captures intricate relationships between pixels and segments, enabling a 
thorough representation of spatial and geometric features in the image. 
The primary goal is to achieve a binary label configuration that maxi
mizes the conditional probability, representing the CRF’s maximum a 
posteriori probability estimate. This poses a combinatorial optimization 
challenge, where the ideal solution is the label configuration maxi
mizing this probability. This optimization problem can be posed as a 
mixed-integer linear programming (MILP) problem, which can then be 
solved to obtain the optimal label configuration.

Identifying the optimal label configuration involves determining 
local weights for interface features and global weights for unary, pair
wise, and higher-order potentials. The optimal configuration is that 
which most closely approximates the ground truth, leading to an NP- 
hard combinatorial optimization problem. Being NP-hard, it is defined 
by the property that while the validity of a solution, like a label 
configuration, can be efficiently verified via the MILP equation, there is 
no polynomial-time algorithm for optimal resolution. Consequently, 
exact solutions to such NP-hard problems are computationally infeasible 
[77], especially in images with hundreds of broken and completion 
segments, typical of fragmented GB networks.

To address this challenge, this study employs differential evolution 
to minimize the objective function, achieving a near-optimal solution. 
As an evolutionary algorithm and global optimization method, differ
ential evolution iteratively refines candidate solutions, adjusting their 
weights based on performance metrics within set bounds [57]. This 
process derives weights for the optimal label configuration by repeat
edly solving the MILP with varied weight combinations. The resulting 
optimal label configuration, indicated by activated segments (marked as 
1 by the CRF), facilitates the smooth connection of completion segments. 
This approach aligns with the law of continuity, essential for ensuring 
continuous, logically flowing GBs in the segmentation process, consis
tent with the physical nature of grain structures, as depicted in Fig. 1e.

2.3. Applying the hierarchical CRF to probabilistic image labeling

The conditional probability, P(Y|X), describes the probability dis
tribution over all possible label configurations Y given the observed data 
X. X refers to the entire set of observed data over the complete image, 
containing all of the features (e.g., pixel intensities, color channels, 
spatial segment information and any other characteristics of the images) 
that are used to determine the labels Y. Y refers to the set of all labels or 
the complete labeling configuration for an entire image, that is repre
sented as a vector containing the labels for each pixel or segment. On the 
other hand, y refers to the label of an individual unit, such as a single 
pixel or segment. Essentially, each yi is an element of the set Y =
{
y1,…, yn

}
. Ypi and Ysi refer to the label configurations assigned to 

pixels pi and segments si that are part of a set, respectively. The indices i, 
j, and k represent the different entities in the image, where i is the pixel 
or segment that is currently being labeled, and j and k represent other 
pixels or segments in the same clique as i. The relationships between i, j, 
and k are encapsulated in the pairwise and higher-order terms of the 
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CRF, capturing local and higher-order interactions in the image. The 
overall probability distribution P(Y|X) is defined as: 

P(Y|X) =
1

Z(X)
exp{ − E(Y|X) }, (1) 

and 

E(Y|X) = Eu
(
Ysi

)
+ Ep

(
Ysi ,Ysj

)
+Eh

(
Ysi ,Ysj ,Ysk

)
, (2) 

where Eu(Ysi ), Ep
(
Ysi ,Ysj

)
, and Eh

(
Ysi ,Ysj ,Ysk

)
are the unary, pairwise, 

and higher-order Gibbs energies, respectively. These energies are 
calculated based on the labeling of segments si, sj, and sk, not just in
dividual pixels. Z(X) is a partition function that ensures a normalized 
probability distribution (i.e., between 0 and 1), given by: 

Z(X) =
∑

si ,sj ,sk
exp{ − E(Y|X) }. (3) 

The unary energy term in Eq. 2, Eu
(
Ysi

)
, is derived from the pixel- 

based CRF where the unary term is generated by a CNN and the pair
wise term is obtained from a Gaussian kernel. Explicitly, for the unary 
term, the segment-based Eu

(
Ysi

)
can be defined as: 

Eu
(
Ysi

)
= ΩuC

⎛

⎝
∑

pi∈Ysi
ψu

(
ypi

)
,
∑

pi ,pj∈Ysi ,pi<pj
ψp

(
ypi , ypj

)
⎞

⎠. (4) 

Here, Ωu represent a global weight and C represents a classifier, 
which identifies pixels as belonging to one of two segment types: com
plete or broken segments. The set of segments is represented by S = Sc ∪

Sb = {s1,…, sn}, which is the union of two segment sets; complete seg
ments, Sc, and broken segments, Sb, respectively. These sets are utilized 
to create segment cliques, which are groups of interconnected segments 
categorized into pair cliques, and completion and broken cliques. 
Sample cliques from each type are shown in Fig. 2a-c, where broken 
segments are represented in red and completion segments in yellow. The 
black pixels represent background pixels, gray pixels represent fore
ground pixels, and white pixels correspond to isolated points. These 
cliques represent different configurations of segments based on their 
relationship and interaction with each other. A pair clique, CP, shown in 
Fig. 2a, is comprised of a pair of broken and completion segments. A 
completion clique, CC, shown in Fig. 2b, describes a completion segment 
and its neighboring broken segments. Finally, a broken clique, CB, 
shown in Fig. 2c, contains all completion segments connecting to either 
end of a broken segment.

At the classification stage, in addition to the broken and complete 
segments, triple junctions, isolated points, and the natural curving an
gles of segments are identified, which are shown in Fig. 2d for a sample 
section of the segmentation mask. In order to obtain completion seg
ments, first all possible completion segments between all pairs of iso
lated points are generated, which is shown in Fig. 2e. Then, viable 
completion segments, which are defined as non-occluding completion 
segments below a predetermined length, are down selected from all 
possible segments, which are shown in Fig. 2f. Hence, the classifier maps 

the unary ψu

(
ypi

)
and pairwise ψp

(
ypi , ypj

)
energies of pixels consti

tuting a segment, si, to the segment’s unary energy Eu(Ysi ), where 

ψp

(
ypi , ypj

)
is given by: 

Fig. 2. Visualization of cliques and classification processes. (a) Pair Clique (CP): Interaction between a broken (red) and completion (yellow) segment. (b) 
Completion Clique (CC): A completion segment with its neighboring broken segments. (c) Broken Clique (CB): Completion segments connecting to a central broken 
segment. (d) Post-classification detailing broken segments, triple junctions, and natural curving angles in a segmentation mask. (e) All possible completion segments 
generated between isolated points. (f) Selection of viable completion segments from the generated possibilities. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
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ψp

(
ypi , ypj

)
= μ

(
ypi , ypj

)∑K

m=1

[
ωp

mkp
m
(

fi, fj

) ]
, (5) 

where the pairwise-pixel features are given by the following equations: 

kp
(1)
(

fi, fj

)
= ωp

(1)exp

⎧
⎪⎨

⎪⎩
−

⎡

⎢
⎣

⃒
⃒
⃒pi − pj

⃒
⃒
⃒
2

2θ2
a

+

⃒
⃒Ii − Ij

⃒
⃒2

2θ2
b

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
, and 

kp
(2)
(

fi, fj

)
= ωp

(2)exp

⎧
⎪⎨

⎪⎩
−

⎡

⎢
⎣

⃒
⃒
⃒pi − pj

⃒
⃒
⃒
2

2θ2
c

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
. (6) 

Here, μ
(

ypi , ypj

)
is a label compatibility function that follows the 

Potts model for cost assignments, which states that the cost is non-zero 

only if the pixels are labeled differently. In other words, μ
(

ypi , ypj

)
= 1 if 

(
ypi ∕= ypj

)
, and 0 otherwise. For a binary segmentation task, this model 

punishes similar pixels with different labels. Pairwise terms are calcu
lated using two features involving Gaussian and bilateral filters, which 
are instrumental in satisfying the similarity and proximity principles. 
These principles suggest that pixels that are closely related in intensity 
and proximity tend to be grouped together. θa, θb, and θc are the pa
rameters for the Gaussian and bilateral filters that can be adjusted, and 
ωp

(1) and ωp
(2) are the corresponding local weights.

The significance of closure principle in visual perception, while 
challenging to encapsulate through local potential functions, is 
approximated in the study by Ming et al. [79] via a series of localized 
connectedness constraints. Within a segment’s terminal point, two kinds 
of connectedness constraints are defined, each defined with a series of 
linear inequalities: 

• The Completion Constraint is characterized by the limitation that a 
completion segment can only be activated if its adjacent broken 
segment is also active, which requires the following inequality to be 
satisfied: ysi ≤ ysj∀(si ∈ Sc) ∪

(
sj ∈ Sb

)
∈ CP.

• The Extension Constraint is defined by the condition that when a 
broken segment is active, at least one neighboring completion 
segment must also be active for possible extension. This is expressed 
as the inequality: ysj ≤

∑
si
ysi∀(si ∈ Sc) ∪

(
sj ∈ Sb

)
∈ CB.

These constraints can be represented in the pairwise term Ep
(
Ysi ,Ysj

)

for segments with the following expression: 

Ep

(
Ysi ,Ysj

)
= M

⎛

⎜
⎝
∑

(si∈Sc)∪(sj∈Sb)∈CP

[(
1 − ysj

)
ysi

]

+
∑

(si∈Sc)∪(sj∈Sb)∈CB

[
ysj

∏(
1 − ysi

) ]

⎞

⎟
⎠

(7) 

where M is a large constant, which is large enough to ensure that Eq. 1
results in a zero-probability configuration (i.e., P(Y|X) =

1/Z(X) exp{ − M} ≈ 0) in the case that these inequalities are not 
satisfied.

In line with the law of good figure, which generally favors simpler, 
more coherent shapes, the higher-order term 

(
Eh
(
Ysi ,Ysj ,Ysk

) )
is defined 

to obtain the best possible label configuration that is grounded in the 
domain expertise. Similar to the models in Ref. [22,79], different po
tentials are utilized to define a higher-order Gibbs energy. In this work, 
the higher-order term is represented as the sum of an interface potential 
and a complexity potential: 

Eh

(
Ysi ,Ysj ,Ysk

)
= ΩI

∑

(si ,sj ,sk)∈CC

[
ψI

(
ysi , ysj , ysk

) ]

+ΩM
∑

(si∈Sc)∪(sj ,sk∈Sb)

[
ψM

(
ysi , ysj , yk

) ]
,

(8) 

where ΩI and ΩM are global weights. The interface potential is defined 
as: 

ψI

(
ysi , ysj , ysk

)
=

∑K

m=1

[
ωm

I km
I

(
fi, fj, fk

) ]
ysi ysj ysk , (9) 

where ωm
I are the local weights for km

I

(
fi, fj, fk

)
, which represent the 

interface features. There are seven interface features, the first four of 
which are obtained from Ref. [79], and an additional three are consid
ered in this work. The initial four features are: (1) effective corner dis
tance, optimized for capturing sharp turns in contours; (2) effective 
smooth distance, designed for capturing smoother transitions between 
segments; (3) angular completion, emphasizes geometric shapes 
through the sum of angles; and (4) angular difference, useful for iden
tifying parallel or nearly parallel segments. The final three features 
pertain to the lengths of the two broken segments the one completion 
segment that forms the clique. Finally, the complexity potential is given 
by: 

ψM

(
ysi , ysj , yk

)
=

∑K

m=1

[
ωm

Mkm
M

(
fi, fj, fk

) ]
ysi ysj ysk , (10) 

where ωm
M are the local weights for km

M

(
fi, fj, fk

)
, which includes two 

features representing the global complexity. These two features are: (i) 
k(1)

M , which is the total effective length of the connected segments, and 
(ii) k(2)M , which represents the angle deviation from the ideal curving 
angle and the connection angle, effectively controlling the model’s 
overall complexity.

The constraints introduced in Eq. 7 posit that ysj and ysk can both be 
active at the same time if and only if ysi is also active, therefore 
simplifying the higher-order term to: 

Eh

(
Ysi ,Ysj ,Ysk

)
= ΩI

∑

(si ,sj ,sk)∈CC

[
∑K

m=1

(
ωm

I km
I
)
]

ysi

+ΩM
∑

(si∈Sc)∪(sj ,sk∈Sb)

[
∑K

m=1

(
ωm

Mkm
M
)
]

ysi .

(11) 

which in turn allows framing the combinatorial optimization problem as 
a MILP problem, for which the final energy function to be minimized 
takes the form: 

min

⎡

⎢
⎣ΩuC

⎛

⎝
∑

pi∈Ysi
ψu

(
ypi

)
,
∑

pi ,pj∈Ysi ,pi<pj

μ
(

ypi , ypj

)∑K

m=1

[
ωmkm

(
fi, fj

) ]
⎞

⎠+ΩI
∑

(si ,sj ,sk)∈CC

[
∑K

m=1

(
ωm

I km
I
)
]

ysi

+ΩM
∑

(si∈Sc)∪(sj ,sk∈Sb)

[
∑K

m=1

(
ωm

Mkm
M
)
]

ysi

⎤

⎥
⎦,

(12) 

subject to ysi ≤ ysj∀(si ∈ Sc) ∪
(
sj ∈ Sb

)
∈ CP and ysj ≤

∑
si
ysi∀(si ∈ Sc)∪

(
sj ∈ Sb

)
∈ CB. Details pertaining to the implementation of pixel-based 

and segment-based CRFs are provided in Supplementary Notes 4 and 
5, respectively.

2.4. Tracing smooth paths

Building on the probabilistic image labeling achieved through the 
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Fig. 3. A cost-based pathfinding algorithm. (a) The ideal label configuration with identified broken and completion segments, alongside curving angles. (b) The 
Gaussian cost map with varying color intensities and specific cost values. The inset illustrates the different costs assigned to pixels drawn from a 2D exact Gaussian 
distribution, based on the curving angle. (c) The lowest-cost shortest path is determined post-application of the A* pathfinding algorithm.

Fig. 4. Computer vision model training and performance. (a) One of the original input images and its corresponding data augmentations. (b) Images from the 
validation set, highlighting the computer vision ground truth (CVGT) and model-predicted fragmented segmentation masks. (c) The model’s predictions on unseen 
images. (d) Plots of the intersection-over-union (IoU) and dice similarity coefficient (DSC) metrics along with the loss function (1-DSC) across training epochs for 
each fold.
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Hierarchical CRF method, the next step in ensuring seamless connec
tivity involves tracing smooth, efficient paths. Existing methods like the 
stochastic completion fields method [59,76] can trace smooth paths 
between points, yet they lack guaranteed solutions and can be compu
tationally intensive. Hence, in this work, where the identification of GBs 
for subsequent chemical analysis is time-sensitive, a cost-based path
finding algorithm is utilized to find the lowest-cost shortest path be
tween the endpoints of a completion segment, denoted as the source and 
the sink. Cost maps are generated using isolated points and curving 
angles of each segment in the ideal label configuration, as shown in 
Fig. 3a. Costs are derived from probability distributions based on the 
natural curving angles of adjacent broken segments (Fig. 3b), aiding in 
connectivity assumptions at interfaces. This method mirrors GBs’ 
energy-minimization tendency, favoring shorter, less costly paths 
similar to how GBs naturally form by reducing their area (length in a 
projection) to lower their energy state. The selected pathfinding algo
rithm is the A* algorithm, a graph traversal and path search algorithm 
[32] that employs a heuristic function, here chosen to be the Chebyshev 
distance with 8-way directionality, with the rationale for this selection 
being elaborated in Supplementary Note 1. This algorithm starts from 
the source, moving towards the sink while tracking path and associated 
cost. Paths are reconstructed by backtracking the lowest-cost shortest 
paths identified by A*, as in Fig. 3c. These paths, shown in Fig. 3g, 
connect broken segments in fragmented masks, resulting in refined 
segmentation depicted in Fig. 3h, reflecting GBs’ natural energy- 
minimizing behavior. Further details on the pathfinding algorithm can 
be found in Supplementary Note 1.

3. Results

To demonstrate this methodology, fragmented segmentation masks 
are generated using the trained computer vision algorithm. The anno
tated images serve as ground truth for model training, labeled as CVGT 
to differentiate from fragmented segmentation ground truth (FSGT). 
CVGT assesses the computer vision model’s performance, while FSGT 
evaluates segmentation refinement. To enhance the robustness and 
generalizability of the model, data augmentation methods were care
fully selected. Brightness adjustment is used to simulate variations in 
illumination, Gaussian blur to mimic slight focus variations common in 
microscopy, and rotation to ensure the model’s insensitivity to orien
tation changes. These augmentations aim to produce a more versatile 
and adaptable computer vision algorithm. A sample of these augmen
tations is displayed in Fig. 4a. The trained model, described in the 
Methods section, is then utilized to generate segmentation masks from 
the input images. The model effectively delineates boundaries in both 
validation and unseen images, as shown in Figs. 4(b) and (c), and in 
comparisons between CVGTs and predicted masks. It successfully gen
erates segmentation masks for images not included in the training, 
performing better on images with fewer atomic features and pronounced 
contrast.

In this study, a 3-fold cross-validation strategy was employed during 
network training over 50 epochs. The aggregated metrics across folds 
indicate an average training IoU of approximately 0.83 and a corre
sponding validation IoU near 0.67, while the training DSC approached 
0.91 and the validation DSC stabilized at around 0.79, as shown in 
Fig. 4d. These similar performance values across folds reflect that the 
model is reliably capturing the key features of the grain boundaries and 
generalizing well to unseen data. Specifically, the consistency of these 
metrics across different splits suggests that the model is not overly 
sensitive to the specific partitioning of the data, which is a strong indi
cation of robust learning rather than overfitting.

In addition, an alternative training approach was explored that 
consolidated all training data and extended the training duration. 
Although this method yielded higher training scores—a result of the 
more intensive training—the validation scores remained comparable to 
those of the cross-validation model. While both approaches deliver 

similar validation performance, the cross-validation model confirms the 
robustness of the segmentation pipeline, and the alternative approach is 
particularly valuable for demonstration purposes because it produces 
sharper, more detailed segmentation outputs. This enhanced detail fa
cilitates a clearer presentation of the efficacy of the subsequent post- 
processing stage in rectifying fragmented masks.

The performance of the model aligns with benchmarks in thin seg
mentation mask tasks, comparable to a DSC of 0.7 [34] reported by 
Jahangard et al. for retinal blood vessel segmentation. Given the focus of 
this work on refining the fragmented segmentation mask, further opti
mizations like hyperparameter tuning are not pursued. The model’s 
predictions on full-resolution images, critical for analyzing detailed 
material structures potentially lost or distorted in lower resolutions, 
demonstrate its efficiency in processing high-resolution images.

On the fragmented segmentation masks, pixel-based CRFs are 
applied, followed by the creation of the FSGT. FSGT is formed by 
manually labeling each identified completion and broken segment, 
following specific principles including consistent judgement across all 
images, marking the connection segments only if the natural curvatures 
of the broken segments appear to intersect and ensure non-occluding 
connections. These FSGTs aid in learning optimal weights and evalu
ating the proposed method’s performance. In a sample image, Fig. 5a 
displays all segments identified by the algorithm, Fig. 5b the manually 
labeled FSGT, and Fig. 5c the best solution from the differential evolu
tion algorithm, which corresponds to the minimum difference in label
ing configurations between the FSGT and MILP solution. This accuracy is 
calculated as the percentage of correctly classified segments (i.e., true 
positives and true negatives) from the total number of viable segments. 
Insets in Fig. 5 magnify portions where the CRF accurately predicts most 
segments, though as noted, some discontinuities may persist where the 
probabilistic evidence for a connection is insufficient. Additional 
magnified views are shown in Fig. S2. Fig. 5c illustrates newly identified 
grains from connected segments, enhancing segmentation accuracy, as 
the subsequent watershed algorithm identifies grains by continuous 
lines forming the boundary of closed geometric shapes.

3.1. Watershed segmentation

A marker-based watershed segmentation technique, based on 
geographical watershed principles [16,62], is employed for image seg
mentation. This method converts the image into a topographical map 
with pixel values representing altitudes, applying the watershed trans
form to create catchment basins associated with distinct markers. The 
basin boundaries, as shown in Fig. 6a, segment the image into distinct 
regions or grains. However, broken lines in the mask, such as those 
visible in Fig. 6a, can result in suboptimal segmentation. The grains in 
these plots appear as randomly colored shapes, except for the region 
depicted in the insets, where grain colors are matched manually for 
better visualization. More details about this method can be found in 
Supplementary Note 2. This segmentation is applied to three image 
types: (1) the original segmentation mask before post-processing 
(Fig. 6a), (2) the FSGT (Fig. 6b), and (3) the CRF solution (Fig. 6c). 
The figure shows that broken segments without viable completion seg
ments are removed, and sections are smoothly connected, thereby 
enhancing segmentation. Insets in Fig. 6 demonstrate how the connec
tions shown in Fig. 5c results in better grain segmentation, impacting the 
statistical representation of GB networks through improvements in grain 
shape and area. Additional magnified views are shown in Fig. S3. These 
segmented images are then used to evaluate the performance of the post- 
processing procedure.

3.2. Performance evaluation

In the segmentation performance evaluation, the post-processing 
procedure consistently improved various metrics, as shown in Table 1. 
Pixel accuracy, measuring correctly classified pixels against the total 

D. Aksoy et al.                                                                                                                                                                                                                                   Materials Characterization 230 (2025) 115694 

8 



number, increased by 0.18 % in the validation set from an already high 
baseline of 0.997 to 0.999, indicating near-perfect classification accu
racy. To better assess segmentation masks, metrics such as IoU and DSC 
are often employed [19]. IoU and DSC metrics exhibited an increase of 
9.15 % and 5.19 % in the validation set due to post-processing, 
respectively. These improvements bring the final IoU and DSC values 
to 92.5 % and 96.1 % representing significant enhancements in seg
mentation accuracy, particularly for tasks involving complex grain 
structures. Calculation details for these metrics are provided in Sup
plementary Note 3. Additionally, grain-specific metrics, like the number 
of grains, NG, and average grain size, VG, also demonstrated notable 
improvements, detailed in Table 2. These enhancements were calculated 
as percentage improvements over the FSGT baseline, based on their 
relative differences.

An analysis of confusion matrices is presented in Fig. 7a for the 
training set and Fig. 7b for the validation set. In the training dataset, the 
CRF correctly predicts 462 out of 577 segments, achieving approxi
mately 80 % accuracy. For the validation set, it accurately predicts 3090 
out of 3937 segments, a 79 % success rate. Regarding time efficiency, 
manual labeling to create the FSGT is a necessary but time-intensive 
prerequisite, taking roughly 41 min per 1000 segments. In contrast, 
the automated CRF method labeled 1000 segments in about 15 milli
seconds on an Intel Core i7-12700K 12-Core Processor. This five-order- 
of-magnitude speed-up is not intended to diminish the crucial role of 
manual annotation for training and validation, but rather to highlight 
the framework’s potential for high-throughput analysis where such 
manual intervention is infeasible. Additionally, weight learning, needed 

once per application, completes in around 47 min. For fully automated 
STEM imaging and spectroscopic data acquisition in GB network 
chemical analysis, the CRF’s rapid processing rate would enable time- 
efficient implementation needed to mitigate the effects of microscope 
instability such as specimen drift and lens defocus.

A novel metric for grain alignment is developed to overcome the 
limitations of traditional metrics in this specific segmentation context. 
This metric computes the average absolute difference between the areas 
of closely aligned regions in two labeled images, identified based on the 
proximity of their centroids. A smaller value for grain alignment in
dicates a higher degree of similarity in terms of grain size between the 
two images, making it an effective measure for comparing segmented 
regions, especially in the context of thin segmentation masks. Significant 
improvements in mean grain alignment, up to 78 % in training and 51 % 
in validation sets, are observed post-segmentation. These enhancements 
are critical as they significantly enhance the accuracy of statistical 
representation of grain size and location, leading to more precise anal
ysis of GB networks, especially in densely packed or intersecting 
boundary regions.

4. Discussion

4.1. Beyond conventional metrics

Pixel accuracy focuses on the count of foreground and background 
pixels and neglects their spatial distribution, which limits its utility in 
single-pixel wide masks. In cases where discarded broken segment pixels 

Fig. 5. Detailed examination of the segment-based CRF labeling. (a) All viable segments identified by the algorithm with broken (red) and completion (yellow) 
segments. (b) The manually labeled fragmented segmentation ground truth (FSGT). (c) The CRF predicted label configuration, illustrating the optimal segment 
connections post-differential evolution algorithm. Insets in each subplot offer a magnified view of selected areas, elucidating the finer details of segmentation. The 
image scale is consistent with that shown in Fig. 4b. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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equal the number of added completion segment pixels, pixel accuracy 
remains unchanged, potentially misrepresenting changes in spatial dis
tribution. While high pixel accuracy may suggest superior performance, 
it can obscure spatial distribution nuances. IoU and DSC, although more 
nuanced, are sensitive to minor spatial variations, which is a notable 
limitation in thin masks. Nevertheless, improvements in these metrics 

post-processing affirm their utility in assessing the alignment of seg
mentation masks with ground truth.

Table 2 shows post-processing enhancements in actual segmented 
grains. Both the number of identified grains and average grain size align 
more closely with the ground truth post-processing, signifying not only 
improved alignment but also enhanced grain segmentation attributes. 

Fig. 6. Image segmentation using marker-based watershed technique. (a) Original segmentation mask before post-processing with visible broken segments. (b) 
Fragmented segmentation ground truth (FSGT) image that highlights the connections between the disconnected segments. (c) CRF solution corresponding to the 
optimal label configuration after post-processing, showing removal of dangling broken segments and smoother connections between sections. The grains are 
randomly colored, except for the insets. Insets in each subplot provide a magnified view, emphasizing the differences in grain identification and segmentation 
performance. The image scale is consistent with that shown in Fig. 4b.

Table 1 
Comparison of segmentation performance evaluation metrics for both training and validation sets, highlighting the improvements achieved through post-processing.

Metric Training set Validation set

FSGT /before* FSGT /after* Percent change FSGT /before* FSGT /after* Percent change

Accuracy 0.998 0.999 0.18 % 0.997 0.999 0.18 %
IoU 0.911 0.979 6.78 % 0.833 0.925 9.15 %
DSC 0.954 0.989 3.58 % 0.909 0.961 5.19 %
Precision 0.929 0.996 6.66 % 0.853 0.967 11.36 %
Recall 0.979 0.983 0.39 % 0.973 0.955 − 1.77 %
Grain alignment 777.8 174.2 77.6 % 4062.7 2007.7 50.6 %

The bold values indicate the percent changes in the metrics.
* Metrics calculated by comparing the FSGT and the segmentation mask before or after post processing.

Table 2 
Metrics specific to grain attributes for both training and validation sets, illustrating the number of grains, NG and average size of identified grains, VG and their 
respective percent changes after post-processing.

Metric Training set Validation set

FSGT* Before* After* Percent change FSGT* Before* After* Percent change

NG 904 797 893 10.62 % 1518 1206 1520 20.69 %
VG 4309.0 4812.8 4429.2 8.90 % 10,864.0 13,293.4 11,180.7 19.45 %

The bold values indicate the percent changes in the metrics.
* Metrics calculated for different segmentation masks, including the FSGT and the segmentation mask before and after post processing.
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These advancements indicate a more accurate representation of grain 
size distribution and density, crucial for assessing mechanical and 
physical material properties. GBs considerably affect aspects like crack 
propagation, corrosion resistance, and mechanical strength, high
lighting the importance of these improvements.

Table 1 and the confusion matrices in Fig. 7a and b reveal a decrease 
in recall for the validation set, suggesting the model’s reduced sensi
tivity in identifying active segments post-processing. This could stem 
from unseen data or minor overfitting during training. These metrics 
primarily assess the model’s proficiency in correctly labeling pixels or 
segments as active or inactive. However, in grain segmentation tasks 
that emphasize not only accurate pixel classification but also the 
morphological characteristics of the grains, such metrics may not fully 
capture the performance.

Addressing limitations in conventional metrics, a new metric, grain 
alignment, is proposed for evaluating segmentation performance. This 
metric involves identifying centroids of corresponding regions in two 
labeled images. For each grain in the first image, the closest centroid 
grain in the second image is determined, ensuring spatial proximity- 
based comparison. The absolute differences in the areas of these 
closely aligned regions are calculated and averaged to gauge size simi
larity, offering a robust measure for segmented region accuracy, 
particularly in thin masks. While this approach provides a robust metric, 
it’s important to note the mean grain alignment metric difference be
tween the training and validation dataset can be attributed to a few 
considerations. This discrepancy arises because accurately identifying 
grains requires all constituting lines to be connected. In fragmented 
images, unconnected lines can lead to incorrect grain identification, 
merging multiple grains into a single large one, and thus affecting the 
grain count and spatial distribution. The post-processing method rec
tifies this by connecting fragmented boundaries; by successfully closing 
a previously open boundary with a completion segment, a single, 
incorrectly merged grain is correctly partitioned into two or more 
distinct grains. This partitioning effect is the primary reason for the 
observed increase in the number of grains (NG) post-processing 
(Table 2), bringing the count closer to the ground truth. Additionally, 
the post-processing’s single-pass might leave some segments 

incomplete. This difference is more indicative of the validation set’s 
complexities rather than a general limitation of the method. By identi
fying closely situated grains as part of the same boundary network, this 
method precisely represents microstructures, essential for accurate 
material behavior prediction, demonstrating its utility despite the noted 
dataset-specific challenges.

In addition to the demonstrated accuracy, the CRF’s remarkable time 
efficiency is particularly valuable in materials science applications 
requiring real-time analysis. This rapid segmentation capability, in stark 
contrast to the time-consuming manual labeling process, allows for 
immediate GB identification post-image acquisition. Crucial in coun
tering issues like drift in TEM imaging, real-time processing ensures 
analyses are based on accurately segmented, current images. This not 
only boosts analysis reliability but also enables dynamic, in-situ exper
imentation and observation in materials science, where monitoring 
changes over time and under varying conditions is essential.

4.2. Comparing standard and specialized ground truths

The CVGT and FSGT evaluate distinct aspects of segmentation, tar
geting specific criteria. The CVGT focuses on essential features for initial 
computer vision training, whereas the FSGT addresses specialized grain 
segmentation requirements, including unique post-processing needs 
such as continuous grain lines. Consequently, comparing post-processed 
results directly with the CVGT is inherently flawed. The CVGT, serving 
as a baseline for assessing computer vision algorithm performance, 
varies across images and is contingent on the computer vision output’s 
quality. Therefore, it becomes an unstable and unreliable baseline for 
evaluating the post-processing procedure’s performance, which inher
ently refines and alters the computer vision algorithm’s initial 
segmentation.

Post-processing impacts metrics like IoU and DSC, influenced by the 
initial model’s alignment with the CVGT. Generally, good alignment 
enhances these metrics post-processing, whereas poor alignment di
minishes them. For instance, in Table 1, using the CVGT as ground truth, 
IoU and DSC in the training set decrease by 0.12 % and 0.21 %, 
respectively, despite a 78 % improvement in grain alignment. This in
dicates that post-processing accentuates the initial segmentation’s 
adherence to the CVGT. Therefore, to isolate the specific influence of the 
post-processing procedure, a comparison with the FSGT is essential. 
Additionally, the subjectivity in annotating GBs complicates evalua
tions. Consistency in CVGT and FSGT annotations is difficult due to 
specific grain characteristics, introducing variability in ground truths 
and affecting metrics. This underlines the limitations of relying solely on 
CVGT for evaluation and the importance of including the FSGT for 
comprehensive assessment.

4.3. Towards advanced segmentation and cross-domain applications

Factors like hyperparameter optimization, model choice, and more 
training data can enhance baseline segmentation accuracy. Post- 
processing adjustments involve hyperparameters like maximum 
segment distance for selecting viable segments, field size, and path
finding costs. Iteratively optimizing these hyperparameters is recom
mended for improved robustness and accuracy. This work also paves the 
way for joint CRF and CNN training. End-to-end trainable models, such 
as those that model CRFs and their feature functions as recurrent neural 
networks, can be appended to CNNs for training [83], which are ex
pected to yield even higher segmentation accuracies [8].

In this study, T-junctions—connections between isolated points and 
segments—are not included, despite constituting about half of the 
training set’s segment candidates. Their inclusion is expected to improve 
segmentation performance [79], offering a fuller network representa
tion. Beyond the seven interface features examined in this study, future 
iterations could integrate additional grain-related features, such as the 
Mullins grain growth model [48] to inform the algorithm about 

Fig. 7. Detailed evaluation metrics for segmentation performance. 
Confusion matrices illustrating the alignment of predicted segment labels with 
true labels for (a) the training set, and (b) the validation set. ‘active’ and 
‘inactive’ denote segments identified as kept or discarded, respectively, high
lighting the model’s classification efficacy.
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potential GB movements for enhanced predictive accuracy. Combining 
electron diffraction with optical reflectance measurements to estimate 
GB character [64], and incorporating crystallographic orientation data, 
can provide detailed grain physical properties, aiding in segmentation 
refinement. Electron diffraction and optical reflectance could enhance 
GB identification, while crystallographic orientation might help differ
entiate grain types or phases. Further segmentation enhancement might 
come from local neighborhood analysis using image features like 
brightness, color, texture [47], and the intensity gradient along 
completion segments [20]. When the original image is accessible, 
contrast differences between grains and texture analyses could be 
employed between the original and the predicted masks [28]. This can 
link GB microstructure with material properties, aiding in predicting 
mechanical, thermal, and electrical behaviors [15].

Implementing this post-processing procedure facilitates high- 
throughput experimental pipelines with reduced human supervision 
requirements, while maintaining comparable accuracies. S(TEM) im
ages can be subjected to computer vision algorithms and subsequently 
analyzed using complementary methods such as electron diffraction and 
spectroscopies in a continuous pipeline. Fractional probabilities ob
tained from computer vision outputs can serve as unary terms in pixel- 
based CRFs, enhancing predictions and enabling confidence level as
signments to each segment for targeted experiments [39].

Statistical distribution information, such as average grain size, could 
be obtained and leveraged to improve segmentation performance. 
Outlying grains, indicative of abnormal growth, could be flagged for 
operator review. The post-processing procedure makes such data 
available to the operator, alongside candidate segments and their 
associated costs, thus facilitating a human-in-the-loop approach while 
expediting the process without compromising fidelity. The segment- 
based CRF approach exhibits strength in detecting closed contours in 
noisy environments [79], a capability that can be harnessed to identify 
interfaces even in the presence of other image features like nano- 
precipitates or atomic details from S(TEM) without an additional clas
sifier [42].

Furthermore, the general applicability of this framework extends to 
less-ideal imaging conditions often encountered in experimental set
tings, such as in-situ microscopy. While the current work utilized high- 
quality STEM images, the post-processing method is fundamentally 
designed to correct fragmented masks, which are characteristic of noisy 
or low-contrast images. Similarly, for thicker samples or alloys exhib
iting complex contrasts from features like segregation-induced com
plexions, the initial CNN segmentation may be challenged. However, the 
CRF-based refinement, which operates on the geometric properties of 
the predicted mask, remains robust. It enforces structural priors like 
continuity and closure, helping to reconstruct the grain boundary 
network even when local pixel evidence is ambiguous. Future work 
could enhance this by incorporating image features specifically sensitive 
to such complex contrast variations into the CRF’s potential functions.

While the presented work focuses on grain boundaries, the core 
methodology is adaptable to other domains. The strength of the hier
archical CRF lies in its general framework of applying perceptual 
grouping rules to refine fragmented line networks. The utility of thin 
segmentation masks extends beyond the domain of materials science, 
finding applications in biomedical imaging for narrow or elongated 
structures. Areas of application include retinal blood vessel segmenta
tion [34], neuronal structure analysis [33], coronary artery delineation 
in cardiac MRI [17], tendon segmentation in musculoskeletal imaging 
[35], lymphatic system studies [41], and angiography for small blood 
vessels [82]. However, the specific feature functions and learned 
weights are necessarily domain-specific. Applying this method to other 
problems, would require retraining on domain-specific ground truths 
and could benefit from designing features tailored to the unique char
acteristics of those images. The methodology introduced in this work 
offers a new perspective and serves as a resource for other researchers, 
setting the stage for further advancements in segmentation mask 

optimization for interconnected line networks.
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