
Article https://doi.org/10.1038/s41467-024-47927-9

Neural network kinetics for exploring
diffusion multiplicity and chemical ordering
in compositionally complex materials

Bin Xing1,2, Timothy J. Rupert1,2, Xiaoqing Pan 1,2 & Penghui Cao 1,2,3

Diffusion involving atom transport fromone location to another governsmany
important processes and behaviors such as precipitation and phase nuclea-
tion. The inherent chemical complexity in compositionally complex materials
poses challenges formodeling atomic diffusion and the resulting formation of
chemically ordered structures. Here, we introduce a neural network kinetics
(NNK) scheme that predicts and simulates diffusion-induced chemical and
structural evolution in complex concentrated chemical environments. The
framework is grounded on efficient on-lattice structure and chemistry repre-
sentation combined with artificial neural networks, enabling precise predic-
tion of all path-dependent migration barriers and individual atom jumps. To
demonstrate themethod, we study the temperature-dependent local chemical
ordering in a refractory NbMoTa alloy and reveal a critical temperature at
which the B2 order reaches a maximum. The atomic jump randomness map
exhibits the highest diffusion heterogeneity (multiplicity) in the vicinity of this
characteristic temperature, which is closely related to chemical ordering and
B2 structure formation. The scalable NNK framework provides a promising
newavenue to exploring diffusion-related properties in the vast compositional
space within which extraordinary properties are hidden.

Diffusion inmaterials dictates the kinetics of precipitation1, new phase
formation2 and microstructure evolution3, and strongly influences
mechanical and physical properties4. For example, altering nanopre-
cipitate size and dispersion by thermal processing enables substantial
increases in strength and good ductility in multicomponent alloys5,6.
Essentially rooted in diffusion kinetics, predicting how fast local
composition and microstructure evolve is a fundamental goal of
material science. In metals and alloys, diffusion processes are con-
nected with vacancies, point defects that mediate atom jumps in the
crystal lattice. Molecular dynamics (MD)7 modeling based on force
fields or density functional theory, which probe the atomic mechan-
isms of diffusion at a nanosecond timescale, are often not able to
access slow diffusion kinetics-induced microstructure change. To cir-
cumvent this time limitation inherent in MD, the kinetic Monte Carlo
method (kMC) is primarily adopted to model diffusion-mediated

structure evolution, for instance, the early stage of precipitation in
dilute alloys8,9. In the kMC simulations, the crucial parameter (vacancy
migration energy) is generally parameterized from continuummodels
such as cluster expansion10 or Ising model11, owing to the high com-
putational cost in transition state search. The rise of compositionally
complex alloys (CCAs), commonly known as high-entropy alloys,
brings many intriguing kinetics behaviors, ranging from chemical
short-range ordering12, precipitation6, segregation13, and radiation
defect annihilation14, which have yet to be fundamentally understood
and ultimately predicted. The chemical complexity in CCAs, however,
poses a new challenge for modeling diffusion-mediated processes due
to local chemical fluctuations leading to diverse activation barriers
(i.e., a wide spectrum)15.

The emergence of machine learning methods has demonstrated
the potential for addressing computationally complex problems in
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materials science that involve nonlinear interactions and massive
combinatorial space16. One of the most promising examples is
machine-learned interatomic potentials that map a three-dimensional
(3D) atomic configuration to its conformational energy with a high
accuracy at a substantially reduced computational cost17. The key step
in machine learning in molecular science is converting atomistic
structure into numerical values (descriptive parameters–descriptor18)
to represent the individual local chemical and structural environ-
ments. Two successful atomic environment descriptors are atom-
centered symmetry function19 and smooth overlap of atomic
position20. The dimension of these local structure descriptors (con-
sideration of all neighboring atoms within a cutoff distance) increases
quadratically with the number of constituent elements21, which esca-
lates the number of parameters and training time for the application of
machine learning to chemically complex CCAs. To address this issue,
active efforts have been taken to compress chemical information and
reduce the size of representation of local atomic environment22–24.
Using the structure descriptor, atomic site-related scalar values, such
as segregation energy25 and atomic propensity to rearrange26, have
been predicted through machine learning models. Concerning
vacancy diffusion in compositionally complex alloys, a critical para-
meter of interest is diffusion energy barrier ΔE, i.e., the energy dif-
ference between transition state and the initial energy minimum
(Supplementary Fig. S1). Due to atomic-scale composition fluctuation
and the existence of multiple diffusion directions in CCAs, it necessi-
tates a machine learning model to precisely predict vectoral property,
specifically, diffusion path-dependent barriers. Another complexity,
needing to be addressed in modeling diffusion and new phase for-
mation in CCAs, lies in the extensive compositional space and the
development of local chemical order, both of which profoundly
impact on diffusion barriers and kinetics.

In this study, we introduce a neural network kinetics (NNK)
scheme for predicting atomic diffusion and its resulting micro-
structure evolution in compositionally complex materials. Grounded
on an efficient on-lattice atomic representation that converts indivi-
dual atoms to neurons while preserving the atomic structure, the NNK
precisely describes atomic (interneuron) interactions through a neural
network model and predicts neuron kinetics evolution, embodying
physical atom diffusion and microstructure evolution. With only one-
time conversion of atomic configuration to neuron map, vacancy

diffusions and chemical evolution are simulated by swapping neurons,
rending high efficiency and scalability. Using refractory NbMoTa as a
model system, we explore chemical ordering and B2 phase formation
mediated by diffusion kinetics and reveal the anomalous diffusion
(diffusion multiplicity) that is inherent in CCAs.

Results
Neural network kinetics scheme
Figure 1a shows the on-lattice structure and chemistry representation,
where the initial atomic configuration with a vacancy is encoded into a
digital matrix, or neuron map. The digits (1, 2, and 3) represent the
corresponding atom types, and 0 denotes the vacancy (refer to Sup-
plementary Fig. S2 for conversion andvisualizationof 3Dcrystals). This
digital matrix capturing structure and composition features offers
several advantages important as a descriptor18. The map dimension
O Nð Þ scales linearly with the number of atoms N and is invariant to the
number of constituent atom types, which has the lowest dimension
possible as the descriptor. Unlike traditional descriptors, the neuron
map not only reflects the local chemical environment of individual
atoms but also, more significantly, captures the entire system.
Importantly, the determination of the descriptive map is simple and
involves no intensive calculation or painstaking parameter tuning.
Essential for diffusion, the representation can be rotationally covariant
and enables prediction of diffusion path-dependent activation barriers
(vector quantities). These vectorized digits are then passed to theNNK
model and serve as input neurons.

Figure 1b depicts the schematic of the NNK which consists of an
artificial neural network and a neuron kineticsmodule. The introduced
neural network (withmore than two hidden layers) is designed to learn
the nonlinear interactions between input neurons (i.e., atoms and
vacancy), and to output the diffusion energy barriers. Notably, the
network only uses the vacancy and its neighboring neurons as inputs,
resulting in a low and constant computational cost (independent of
system size) without sacrificing accuracy (see Supplementary Note 2
for details). With the available barriers associated with each individual
diffusion path, the neuron kinetics module adopts the kinetic Monte
Carlomethod to carry out diffusion kinetics evolution (see “Methods”).
There are two features rendering the NNK a high computational effi-
ciency and scalability with system size. First, the descriptor map is
calculated only once for the initial atomic configuration, because

Fig. 1 | Schematic illustration of neural network kinetics (NNK) framework.
a The on-lattice structure and chemistry representation of the entire system. A
vacancy and its local atomic environment are encoded into a digital matrix (neuron
map). b NNK framework consists of a neural network that outputs vacancy

migration barriers, and a neuron kinetics module that implements neuron jump
(diffusion jump) based on kinetic Monte Carlo (kMC). See “Methods” for details on
neuron kinetics. Vacancy jumps and chemical evolution are efficiently modeled by
swapping of neurons and neuron map evolution.
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atomic diffusion and local chemical evolution are operated on the
representing neuron map. Second, since atomic diffusion depends
solely on the local chemical environment, the NNK trained on small
configurations can be directly applied to large systems for diffusion
modeling. Therefore, with only a one-time conversion of atomic con-
figuration to neuron map, vacancy jumps and chemical evolution can
be simulated by swapping two digits of the neural map. In this way,
millions of vacancy jumps can be modeled efficiently, with each jump
iteration involving the action of just two neurons (Fig. 1b).

Predicting a path-dependent diffusion barrier spectrum in
multidimensional composition space
Diffusion in crystals occurs through elementary atomic jumps between
a vacancy and its neighboring lattice sites (vacancy mechanism4,27). In
body-centered cubic (bcc) CCAs, a vacancy is associated with eight
different jump directions, and the variation in the jumping atoms and
surrounding chemical environment can result in eight distinct migra-
tion barriers15,28. By utilizing the rotational covariance of lattice
representation, it is possible to predict the jump path-dependent
barriers (a vector quantity) from a single chemical configuration.
Specifically, by aligning each diffusion path to a constant reference
orientation through rotation and/or mirroring operations,

unique neuron map and digital vector, Di, can be generated for each
individual diffusion path i, without breaking the structural symmetry,
as demonstrated in Fig. 2a. The Supplementary Table S1 and Supple-
mentary Fig. S3 summarizes the operations aligning the diffusion
direction of interest with this reference, preserving structural
symmetry.

The neural network takes in Di, which carries local atomic envir-
onment encompassing the vacancy, as input. The data (atomic digits)
then flow through hidden layers to the output layer, which predicts the
associated diffusion activation barrier, Ei. The first hidden layer in
neural network characterizes the linear contribution of the input
neurons (atoms and vacancy) to the migration barrier, while the fol-
lowinghidden layers capture thenonlinear andhigh-order interactions
that impact vacancy jump. With just four hidden layers and 112
neighboring atoms (up to the 8th nearest neighbor shell) of the
vacancy, the neural network achieves a high level of accuracy in pre-
dicting the path-dependent diffusion barrier (Supplementary Note 3
and Supplementary Figs. S12–14 for the testing of different neural
network structures). Figure 2b presents the evaluation of machine
learning model performance for two different concentrations (one
concentrated and one dilute), where the predicted energy barrier
value is compared with the ground truth (see “Methods”). The

Fig. 2 | Predicting diffusion barrier spectra in the entire composition space of
Nb–Mo–Ta. a Creation of unique neuron maps and feature vectors for each indi-
vidual diffusion path P, which enables the prediction of eight path-dependent
barriers from a vacancy. The symbol V represents the vacancy. b Performance of

neural network in predicting diffusion barrier spectrum in concentrated,
Nb33Mo33Ta33, and dilute, Nb90Mo5Ta5, solutions. c Diffusion barrier diagram
generated by the neural network. The nonequimolar Nb15Mo65Ta20 alloy exhibits
the highest barrier in the Nb–Mo–Ta system.
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predicted and true values exhibit the same spectrum of barriers, and
the mean absolute error (MAE) is less than 1.2% of the average true
migration barrier for the two alloys, concentrated solution
Nb33Mo33Ta33 and dilute solution Nb90Mo5Ta5 (see Supplementary
Fig. S4 for new compositions and different system sizes).

After training on only tens of compositions (SupplementaryNote 4
and Supplementary Figs. S15 and 16), the neural network remarkably
harnesses the complete composition space of the ternary Nb–Mo–Ta
system, building the relationship between composition and diffusion
barrier spectrum. Figure 2c shows the diffusion barrier diagram gen-
erated by the neural network, from which the alloy (Nb15Mo65Ta20)
having the highest mean barrier is quickly identified. While research
efforts have been primarily focused on equimolar or near-equimolar
compositions, our results indicate an abnormal behavior can originate
from nonequimolar concentrations hidden in the vast composition
space. The neural network, which accurately predicts diffusion barriers
for new and unseen compositions, implies that it fully deciphers the
complex local chemistry variation and links it with diffusion property.

Diffusion kinetics-induced local chemical order
Originating from attractive and repulsive interactions among the
constituent elements of CCAs, atomic diffusion leads to the emer-
gence of local chemical order on a short- to medium-range scale. To
uncover diffusion-mediated chemical ordering and its dependence on
annealing temperature, we employ the NNK model to performe aging
simulations of the equimolar NbMoTa alloy at temperatures ranging
from 100 to 3000K. With the ability to resolve individual atomic jump
and the low computational cost, 20million diffusion jumps are carried
out for each temperature.

Figure 3a shows the change of the local chemical order δij as a
function of temperature. Here the non-proportional order parameter,
δij , quantifies the chemical order between a pair of atom types i and j in
the first nearest neighbor shell (see “Methods”). A positive δij indicates a
highernumberof pairs compared to a randomsolid solution, suggesting
that element i prefers to bond with element j (favored pairing), while a
negative value suggests an unfavored pairing. At a high temperature
(3000K), the system ultimately approaches the random solid solution,
as reflected by the small value of δij . As the temperature decreases, the
magnitudes of δij for Mo–Ta, Ta–Ta, Mo–Mo pairs increase mono-
tonically until they reach a turning point (around 800K), beyond which
the trend reverses. The chemical order falls rapidly as the temperature is
lowered and, at 400K, it nearly vanishes. It is noted that the system
experiencedan identical numberof 20million jumpsat all temperatures.

These results suggest the existence of a critical temperature atwhich the
diffusion-favored ordering reaches a maximum (Regime I in Fig. 3a).
Below the critical temperature (Regime II), diffusion jumps barely
develop and enhance chemical order.

To better understand this critical temperature and how the
number of diffusion jumps affects it, we present the δMo�Ta order
parameter values obtained from awide range of jumps, from 2× 104 to
2 × 107, in Fig. 3b. As the number of jumps increases, the characteristic
temperature TðδmaxÞ corresponding to the maximum order gradually
shifts to lower values and finally converges to 800 K. The inset of
Fig. 3b illustrates the variation of TðδmaxÞ with diffusion jumps, again
unveiling this critical temperature below which diffusion-mediated
ordering is substantially limited.

Jump randomness and diffusion multiplicity in CCAs
In monoatomic crystals, the diffusion of vacancy can be described as
purely random, with each possible jump path having an equal prob-
ability of occurrence. However, in CCAs, local variations in chemical
composition give rise to distinct and path-dependent energy barriers,
resulting in a multivariate distribution of jump probabilities. For
example, in bcc CCAs, the jump probability for each of the eight
possible paths associated with a vacancy site can be expressed as
pi = expð�Ei=kBTÞ=

P8
j = 1 expðEj=kBTÞ, where Ei is the energy barrier of

path i, kB is Boltzmann constant, and T is temperature. This can lead to
various diffusionmodes, as illustrated in Fig. 4a, where the two limiting
jump cases are presented. One is pure random jump (where all jump
paths have the same probability of occurrence), and the other is non-
random, directional lattice jump (where one path predominates). To
quantify the degree of lattice jump randomness, we define an order
parameter R= 1� σ pð Þ=max σð Þ, where σ pð Þ is the standard deviation
of jump probability, p, andmax σð Þ is themaximum standard deviation
occurring in directional or selective jump. Note the parameter, R,
ranging from 0 to 1, quantifies the degree of jump randomness, with
R = 1 and R =0 representing the limiting cases of random diffusion and
directional diffusion, respectively.

Figure 4b shows spatial and statistical distributions of lattice jump
randomness R at three representative temperatures. The spatial maps
display color-coded lattices based on their respective R values. At a
high temperature of 3000K, the thermal energy (kBT ≫ Ei) smears out
the energy barrier difference between paths, leading to a peak R value
of 0.7, indicating highly random jumps. It is tempting to speculate that
random atomic diffusion is insufficient to build and develop B2
ordered phase, which apparently corresponds to the low order

Fig. 3 | Diffusion kinetics-mediated local chemical order in the equimolar
NbMoTa alloy. a Variation of chemical order δij obtained at different annealing
temperatures displays a critical temperature that divides the map into two char-
acteristic regimes, denoted as diffusion-favored (I) and diffusion-limited (II).

b Development of Mo–Ta order, δMo�Ta, as a function of diffusion jumps from
2× 104 to 2 × 107. The inset shows that the jump number dependence of peak
temperature converges to the critical value ~800K below which the chemical
ordering is suppressed.
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observed athigh temperatures (Fig. 3a).At a low temperatureof 400K,
the lattice jumps transform into directional diffusion, as demonstrated
by the R distribution having a peak value of 0. This implies that only
one of the eight diffusion pathways is active at each lattice site. Pre-
sumably, this one-dimensional directional diffusion predominating at
low temperatures (<400K) limits and suppresses the nucleation and
growth of three-dimensional B2 structure. Intriguingly, at an inter-
mediate temperature (~800K), the lattice jump randomness R exhibits
a broad distribution, spanning from 0.0 to 0.7, indicating highly het-
erogeneous diffusion modes.

To assess the system-level diffusion multiplicity (heterogeneity)
and its temperature dependence,we calculate the varianceof diffusion
randomness Var Rð Þ across temperatures ranging from 100 to 3000K,
as illustrated in Fig. 4c. When close to the high or low-temperature
ends, there is a rapid change in Var Rð Þ, implying that diffusion
approaches a random or directional mode. The temperature variation

of Var Rð Þ reveals a peak value of diffusionmultiplicity at around 850K.
Random and directional-type lattice jumps are spatially interspersed
throughout the entire system, as shown in the spatial map of Fig. 4b.
The observation of the highest diffusion multiplicity (Fig. 4c) and
maximum B2 order (Fig. 3a) occurring in the similar intermediate
temperature range suggests a strong correlation between diffusion
heterogeneity and the formation of B2 order.

B2 structure nucleation and growth kinetics
Determining the formation kinetics of chemically ordered structure in
a complex solid solution hasbeen a challengedue to the local chemical
fluctuations and huge amounts of diffusion barriers. The NNK frame-
work efficiently and precisely predicting diffusion barrier at any che-
mical environment is intended to address this issue. To demonstrate
the efficacy of the model, we perform aging simulations of NbMoTa
consisting of 128,000 atoms. Figure 5a–c shows the spatial-temporal

Fig. 4 | Jump randomness and diffusion multiplicity of an equimolar
NbMoTa alloy. a Schematics of two limiting lattice jump modes. One of the eight
paths is predominated in directional jump (jump randomness R=0), while all eight
paths have the same hopping probability p in random jump (R = 1). b Spatial and
statistical distributions of lattice jump randomness, R, at three representative
temperatures. At 3000K the distribution of R (Rpeak = 0.7) indicates highly random
diffusion, while at 400K the lattice jumps transform to directional (selective)

diffusion mode (Rpeak = 0.0). Lattice jumps at 800K exhibit highly heterogeneous
diffusion modes, shown by the broad distribution of R. c Diffusion multiplicity
VarðRÞ as a function of temperature reveals a critical temperature (~850 K) atwhich
diffusion ismore heterogeneous (widest distributionofR).Moving to the two ends,
diffusion approaches simple random and directional modes at ultimate high- and
low temperatures, respectively.
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nucleation and evolution of B2 structure induced by diffusion. With
1 × 106 diffusion jumps, a considerable amount of B2 clusters emerge
in the system (Fig. 5b),mostofwhich are small clusters (size <8 atoms).
As the number of diffusion jumps further increases (5 × 106), large
clusters begin to appear and continue to grow, accompanied by
annihilation and reduction of small ones (Fig. 5a). The decrease in
spatially isolated small clusters are a result of their attachment or
adsorption by nearby growing large ones. Apart from small clusters,
another essential kinetic process underlying growth is large cluster
interaction and coalescence. When two spreading clusters come near
to each other, they merge into a large one mediated by diffusion
(Supplementary Fig. S8). Figure 5d reveals the spatial distribution of
formed B2 clusters colored by their size in the aged material. In con-
trast to the precipitation of ordered nanoparticles in dilute solutions,
the more heterogenous growth of chemically ordered structure sig-
nifies the substantial role of diffusion multiplicity in governing the
complex chemical ordering in concentrated solutions.

Discussion
Diffusion kinetics in the emergent compositionally complex
materials29,30 (often called high-entropy alloys and high-entropy oxides)
raise many intriguing rate-controlling phenomena and properties, such
as chemical short-range order12, chemically ordered nanoparticle
formation31, decomposition32, superionic conductivity33, extraordinary
radiation tolerance14,34, to new a few. These behaviors are controlled by
the underlying atomic diffusion, which occurs in a chemical environ-
ment with a high degree of local composition fluctuations. Uncovering
the kinetic processes and predicting structure evolution in these mate-
rials requires novel computational techniques that can disentangle their
chemical complexity and connect it with individual atomic jumps. The

NNKscheme introducedhere aims to tackle the kinetic behaviors arising
from diffusion processes, with a particular focus on this novel class of
materials. Underpinned by an interpretable chemistry and structure
representation (neuron map), the neural network precisely predicts the
diffusion path-dependent energy barriers governing individual atomic
jumps. The atomic diffusion and structure variations are effectively
modeled on the neuron map through neuron digit exchange (Fig. 1b).
This framework possesses three key advantages that give both high
computational efficiency and accuracy in modeling diffusion and new
phase formation. First, the interpretable on-lattice representation,which
converts chemistry and structure to physically equivalent neuronmaps,
yields an ultra-small feature size, critical for machine learning models.
Second, the determination of neuronmap (descriptor) is a one-time and
simple process, as it can be updated to fully replicate atomic diffusion
jumps and structure evolution. Importantly, the rotational covariance of
the neuron map enables the prediction of vector values from a single-
neuron map (vacancy configuration). Third, the NNK trained by small
models can be applied directly to investigate the kinetic behavior of
large systems without sacrificing accuracy. This size scalability is
demonstrated, for instance, by accurate barrier predictions (see Sup-
plementary Figs. S4 and S20) and ordered phase growth in large
NbMoTa systems (Fig. 5).

Cluster expansion (CE)10,35 method has long been used to study
thermodynamic properties of multicomponent systems, such as
vacancy formation energy36. For diffusion kinetics, the pivotal factor is
determining the diffusion barriers, requiring calculation of transition
states (saddle points). While the CE has been commonly employed to
predict the energies of local minimum states8,9, presenting the transi-
tion state using CE and predicting the associated energy barrier
remains a challenging task37 (Supplementary Note 5). Particularly, the

Fig. 5 | B2 structure nucleation and growth kinetics during annealing in NbMoTa. a B2 cluster size evolution with the number of diffusion jumps. b–d Spatial
distributions of growing B2 cluster at 1 × 106, 5 × 106, and 1 × 107 diffusion jumps. Clusters are color-coded by their size.
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increase in chemical complexity makes the design of clusters for even
local minimum configurations a time-consuming process. To tackle
this challenge, an approach involving parametrizing the reaction
coordinate and minimum energy path has been proposed38, however,
leading to a low prediction accuracy. Anothermachine learningmodel
promising to atomisticmodeling is graphneural network (GNN),which
has shown great success in developing universal machine learning
interatomic potentials39,40. Regarding vacancy diffusion in CCAs, GNN
theoretically has the potential to predict vector properties using
rotation-covariance features. However, modeling vacancy jump and
chemical evolution using graph network entails node swapping and
updating edge properties. Each node swap (representing vacancy
jump) can potentially affect neighboring nodes and their connected
edge features, necessitating their updates. This requires altering a
significant portion of the network, encompassing the 8th nearest
neighbors of vacancy node, after each vacancy jump. In contrast, the
introduced NNK scheme, with neural map representation, simplifies
the process by only requiring the update of two neurons for each
diffusion jump. This simplicity allows the mirroring of vacancy jumps
through the swapping of neurons (digits). With just one-time conver-
sion of the atomic configuration to a neuron map, vacancy diffusion
and chemical evolution are efficiently simulated by swapping digits
(the vacancy neuron and one of its nearest-neighboring neurons)
according to precise diffusion barriers and system temperature. In this
way, tens of millions of vacancy jumps are modeled efficiently, with
each jump iteration involving the action of just two neurons.

Stemming from attractive/repulsive interactions between solutes,
atomic diffusion inevitably leads to nucleation of chemically ordered
structure in CCAsduring annealing. Using theNNK andbccNbMoTa as
model system, we uncover the existence of a critical temperature, at
which the B2 order reaches its maximum value. This temperature
dependence of chemical order is closely related to the underlying
lattice jump randomness, as shown by the randomness maps (Fig. 4).
At high temperatures close to the melting point, diffusion jumps ulti-
mately approach a purely random process, corresponding to a low
propensity for order formation. At low temperatures, lattice diffusion
becomes dominated by the lowest barrier path, manifesting as direc-
tional jumping and restricting the nucleation of chemically ordered
structure. At the critical temperature in the intermediate range,
random-like and directional-type lattice jumps spread the entire sys-
tem, exhibiting the highest diffusion heterogeneity (multiplicity,
Fig. 4c). By tracking individual B2 clusters during annealing, it is found
that their nucleation and growth are intermittent and non-uniform,
accompanied by the reduction and annihilationof small clusters (Fig. 5
and Supplementary Video 1). This salient feature in the kinetics growth
of B2 structure is not captured by fictitious thermodynamics-based
modeling using random atom type swap (see “Methods” and Supple-
mentary Fig. S9),which shows amoreuniformgrowth (Supplementary
Fig. S10). These results highlight the complex and multitudinous
kinetic pathways in CCAs toward stable states, where many processes
like ordered structure nucleation, annihilation, growth, and rearran-
gement are interplayed and coordinated.

The neural network trained on dozens of compositions demon-
strates high performance for unseen compositions, unveiling the
entire ternary space of Nb–Mo–Ta (Fig. 2c). With the design space for
composition being practically limitless, the compositionally complex
material formed by mixing multiple elements opens a new frontier
waiting to be explored. Traditional structure-property calculations
relying ondensity functional theory andmoleculardynamicsworkwell
for small datasets but fall short in harnessing the vast composition
space. Recent advances in the rapidly growing field of machine learn-
ing creates a fertile ground for computational material science41,42,
having led to the discovery of alloys with optimal properties43. By
directly connecting the multidimensional composition with diffusion
barrier spectra, the NNK illuminates a bright path to explore the vast

compositional space of CCAs, where hidden extraordinary kinetic
properties lie.

Methods
Material system and diffusion barrier calculation
We focus on the emergent refractory CCA, Nb–Mo–Ta, as the study
system to demonstrate the neural network kinetics (NNK) scheme.
When generating diffusion datasets for training the neural networks,
we use atomic models consisting of 2000 atoms. To compute the
vacancy diffusion energy barriers for the Nb–Mo–Ta system,we utilize
the climbing image nudged elastic band (CI-NEB)44 method and a
machine learning potential45. In a bcc structure, vacancy jump has
eight pathways and final configurations, which can be created by
exchanging the vacancy with its nearest neighbor atoms. By labeling
each jump path, the path-dependent energy barriers are calculated
and stored for machine learning model training and validation. In
the CI-NEB calculations, we set the inter-replica spring constant to
5.0 eV/Å2. The energy and force tolerances are chosen as 0.0 eV and
0.01 eV/Å, respectively. These parameters are selected to optimize the
convergence of the calculations15.

Structure representation and neural networks
The on-lattice representation coverts the atomic structure into a digit
matrix, whichwill be decipheredby neural networks. The conversion is
done through a voxel grid that separates the 3D material model into
uniform cubes. Each grid acquires a digit value (voxel) according to its
enclosed atom type or vacancy. For bcc structure, the largest grid we
can use, which can fully distinct all lattices and yield the smallest voxel
grid dimensionality, is a=2, wherea is the lattice constant of the crystal
(see Supplementary Note 1).

The neural network, taking the representative structure and
chemistry digits (neurons) as input, process them through the hidden
layers, outputting the energy barriers. The connections between neu-
rons in the hidden layers imitate the physical interactions between
atoms and atom-vacancy. Representing the interaction strength
(contribution to themigration barrier), theweights associatedwith the
connections are adjusted during training. To understand the influence
of network architectureonpredictionperformance,we train a series of
neural networks with varying number of layers and number of neurons
in each layer (Supplementary Note 3). As the number of neurons in
each hidden layer increases from 16, 32, 64, to 256, the testing MAE
rapidly decreases, followed by convergence at 128 that is enough to
explicitly describe all the local neighbors of a vacancy (Supplementary
Fig. S14). By testing the different number of layers, the final network
structure with 4 hidden layers and 128 neurons in each layer was
selected for simulating the diffusion in the equimolar NbMoTa alloy,
owing to its robustness in concentrated solid solutions. In addition, we
separately train a convolutional neural network (CNN) to comparewith
the simple neural network. The CNN comprises four convolutional
layers that compress the 3D neuroma map to 1 × 128 dimension for
barrier prediction. The architecture of CNN is depicted in Supple-
mentary Fig. S17 and described in Supplementary Note 3. Likely
resulting from adaptive learning spatial hierarchies of features from
input 3D atomic structure, CNN exhibits slightly enhanced predictive
performance (Supplementary Fig. S20).

The training data are generated from 46 different compositions,
which uniformly sample the Nb–Mo–Ta diagram (Supplementary
Fig. S18 and Supplementary Table S3). In Supplementary Note 4, we
carefully study and discuss the number of compositions required to
train a highly accurate network for predicting the complete ternary
space. Each composition model contains 2000 atoms, giving rise to
16,000 diffusion barriers. The total 736,000 data points are split into
training dataset (95% of total data) and validation dataset (5%). All the
compositions and their data points are summarized in Supplementary
Table S3. After validation, the neural network is tested for barrier
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prediction in unseen compositions (which are not used for training or
validation) and in atomic configuration with different sizes. For
example, Supplementary Fig. S4 shows the testing results for the new
compositions, Nb10Mo10Ta80, Nb20Mo60Ta20, Nb40Mo30Ta30, and the
average MAE is around 0.018 eV. Notably, the neural network pre-
serves the consistently high accuracy for different-sized systems con-
taining 512, 2000, and 6750 atoms, indicating scalability.

Neuron kinetics
The neuronmap enables efficientmodeling of vacancy kinetics through
the exchange of neurons, referred to as neuron kinetics. By converting
the atomic configuration into a neuron map just once, the neural net-
work simulates vacancy jumps simply by swapping two neurons within
the map (vacancy and one of its nearest-neighboring neurons). This
streamlined process allows to efficiently model tens of millions of
vacancy jumps. Importantly, it is worth noting that each jump iteration
involves the exchange of only two neurons, as depicted in Fig. 1b.

Vacancy jump is carried on the neuron map based on the kinetic
Monte Carlo (kMC) algorithm. Diffusion occurs through vacancy
(vacancy neuron) jump to its nearest-neighboring sites, and each site
has a jump rate defined by ki = k0 expð�Ei=kBTÞ, where Ei is the energy
barrier along jump path i, kB is Boltzmann constant, T is temperature,
and k0 is an attempt frequency. The vacancy diffusion barriers asso-
ciatedwith the eight jumppaths are obtained from the neural network.
The total jump rate for the current vacancy configuration is R=

P8
i= 1ki,

i.e., the sum of all individual elementary rate. To simulate kinetic
evolution, we first draw a uniform random number u 2 ð0,1� and select
a diffusion path, p, which satisfies the condition46,Pp�1

i = 1 ki=R≤ u≤
Pp

i= 1ki=R. The vacancy jump along path p is then exe-
cuted by exchanging the vacancy with the selected neighboring neu-
ron (neuron digit swapping), resulting in an updated neuron map for
the next iteration.

Static Monte Carlo and molecular dynamics simulation
We perform static Monte Carlo (MC) simulations coupled with mole-
cular dynamics to reveal the chemical order determined by enthalpy
(mainly thermodynamics). In eachMC trial, a pair of atoms is randomly
selected for type swap. The acceptance probability is according to the
exp �ΔH=kBT

� �
inMetropolis algorithm47. The term ΔH is the enthalpy

change after swap, therefore, the chemical evolution and ordering is
predominately contorted by enthalpy. The MC swaps are followed by
MD equilibration. For the systems consisting 1024 atoms, we perform
18,000 swap attempts (each atom on average subjected to 18 swaps)
and 600ps MD equilibrium. Supplementary Fig. S9 shows the local
order as a function of MC step for temperatures from 100 to 3000K.
To study B2 cluster growth, weperform theMCandMDsimulation in a
largemodel (128,000 atoms). There are totally 135,000 swaps coupled
with 150 ps MD equilibrium. Unlike diffusion-mediated B2 cluster
growth, the clusters grow in a uniform and homogeneous manner
(Supplementary Fig. S10).

Local chemical order parameter
Toquantify the degree of chemical order, we use the non-proportional
parameter48 δij =Nij � N0,ij , where Nij denotes the actual number of
pairs between atoms i and j in the first nearest-neighboring shell, and
N0,ij represents the average number of pairs in random solutions. A
positive δij means a favored and increased number of i-j pairs, indi-
cating element i tends to bond with element j. A negative δij indicates
unfavored pair, meaning i and j repel each other. Random solid solu-
tion has δij =0.

B2 cluster analysis
Mo and Ta tend to attract each other and form the B2 structure. The B2
unit cell has a simple bcc structure and comprises two species, Ta and
Mo, orderly located in the cube corners or center. The unit cell can have

either Ta or Mo-centered pattern. Because of the high concentration of
Nb in the equimolar NbMoTa alloy, we characterize a unit as B2when 3/
4of theTanearest neighbors areMo,or 3/4of theMonearest neighbors
are Ta. To analyze the B2 cluster, the identified individual B2 units are
gathered into individual group according to distance criterion. Two B2
units can have volume-, face-, edge-, and point-sharing at distanceffiffiffi
3

p
a=2, a,

ffiffiffi
2

p
a,

ffiffiffi
3

p
a (i.e., 5th shell), respectively, where a is lattice

constant (illustrated in Supplementary Fig. S7). Choosing the cutoff
distance as half of the 5th shell and6th shell, the spatial distribution and
size of all B2 clusters can be successfully characterized. During the
kinetic annealing, clusters can be reduced or annihilated, which causes
clusters appearance or disappearance from time to time. The fluctua-
tion hinders visualization and analysis of stable B2 cluster evolution. To
address this issue, we search and identify the persist clusters that exist
all the time during annealing. Focusing on the persistent cluster pro-
vides a clear evolution of cluster growth (Fig. 5).

Data availability
The diffusion data in this study have been deposited in the Zenodo
under accession code https://doi.org/10.5281/zenodo.7714650.

Code availability
All source codes of NNK are available at the GitHub repository https://
github.com/UCICaoLab/NKK49.
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Supplementary Figures 

 

 
 

Figure S1. Schematic illustration of vacancy diffusion and the corresponding diffusion 

energy landscape. (a) Vacancy diffusion states from an initial state, through saddle point, and 

leads to the final state. (b) The energy barrier ∆𝐸, i.e., the energy difference between transition 

state and the initial energy minimum, is the governing value for diffusion. The key task is to 

accurately and efficiently predict these barriers in compositionally complex materials.    
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Figure S2. On-lattice presentation of local atomic environments in equimolar NbMoTa alloy. 

(a) Atom plane containing a vacancy (color-coded by black). (b) Enlarged view of the region 

within the circle region in (a) with cutoff distance 7.5 angstroms. (c-d) Digit matrix (neuron map) 

converted from atomic structure. (e-g) 3D illustration of atomic configuration within/below the 

vacancy-containing layer. (h) Vacancy and its first nearest neighboring atoms, and (i-j) the 

corresponding neuron map. The nearest neighbors are determined based on Euclidean distance 

between vacancy and atoms.  
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Table S1. Operations of aligning eight diffusion pathways with the reference direction. 

Path Rotation Mirror Path Rotation Mirror 

V-1 0 No V-5 0 Yes 

V-2 0.5π No V-6 0.5π Yes 

V-3 π No V-7 π Yes 

V-4 -0.5π No V-8 -0.5π Yes 

 

 
Figure S3. Aligning diffusion pathways 2, 3, 7 and 8 with the reference direction. The symbol V 

represents the vacancy. 

0.5π

rotation

π rotation
encoding

mirror

encoding

P
at

h
 2

P
at

h
 7

+

V

V

V 0

0

P

P

P P

P

P

P
P

P

P

P

P

P

P

P

PP
P

3
1

1

2

2

1

3

3

3

2

2

2
2

3

1
3

V

···3 0 3 0 0 0 3 0 2 0 1 0 1 0 0 0 2 0 2

···2 0 3 0 0 0 1 0 3 0 2 0 2 0 0 0 1 0 3

vacancy

vacancy

···

-0.5π rotation
encoding

mirrorP
at

h
 8

+V 0

P

P

P

P

P

P

PP
P

2

1

1

2
3

2

3
3

V

···2 0 2 0 0 0 1 0 1 0 2 0 3 0 0 0 3 0 3

vacancy

···

π

rotation

encoding

P
at

h
 3

V V 0

PP P
P

P

P

P

P

P
1

1

3

2

3

2

3

2

···1 0 3 0 0 0 2 0 3 0 1 0 3 0 0 0 2 0 2···
vacancy

···



  Page | 5 

 

 

Figure S4. Performance of neural network in predicting diffusion barrier spectrum in unseen 

compositions and varying system sizes (scalability). Three compositions, including 

Nb10Mo10Ta80, Nb20Mo60Ta20, Nb40Mo30Ta30, and three systems containing 512, 2000, and 6750 

atoms are shown.  
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Figure S5. Diffusion and chemical ordering in NbMoTa alloy from NNK simulation at 1,000 

K. (a) The accumulated diffusion time as a function of jumps. (b) Variation of chemical order 

parameters with jump. (c) Initial atomic configuration with random solid solution, and (d) aged 

structure demonstrating B2 ordered cluster.   

  



  Page | 7 

 

Figure S6. Variation of the chemical order parameter as a function of diffusion jump 

obtained from NNK simulation. The simulations are conducted at twenty different temperatures, 

ranging from 3,000 K to 100 K, as indicated in the labels. 
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Figure S7. B2 cluster identification. (a-e) A cluster consists of two B2 cells that share volume, 

face, edge, and vertices. (f) The corresponding separation distance between the two B2 cells. 
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Figure S8. Formation and coalescence of B2 clusters in a small equimolar NbMoTa model. 

Panel. (a) shows the variation in B2-centred atoms as the number of jumps increases. (b) the same 

configuration is displayed, but with the entire B2 cells visible. After 105 jumps, the two clusters 

combine into one, represented in green. (c) displays the B2 cluster size distribution obtained after 

varying numbers of jumps. (d) depicts the number of B2 cells as a function of atomic jumps, with 

panel (e) indicating a decrease in the number of isolated B2 cells with increasing atomic jumps. 
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Figure S9. Variation of chemical order obtained at different annealing temperatures using 

static Monte Carlo with random swap. Variation of chemical order 𝛿ij obtained at different 

temperatures. The chemical order shows monotonic increases with decreasing temperature.    

 

 

 

Figure S10. B2 structure morphology generated from a random swap MCMD simulation, 

exhibiting a more uniform distribution. Spatial distributions of growing B2 clusters with the 

number of MC swaps N.  
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Supplementary Note 1: On-lattice structure and chemistry representation 

We use on-lattice representation to convert local atomic environments into digital matrices in 

which each value represents one atom or vacancy. To achieve this, we follow two rules: divide the 

material model into a grid of pixels; place each atom at the center of one pixel. With the periodicity 

of crystalline structures, the rules provide us guidance in digitalizing the material model 

reasonably.  

 

Figure S11. On-lattice representation and pixel size determination. (a) A unit cell with lattice 

constant 𝑎. (b-c) depicts the grid separating the atomic model into uniform cells (pixels), with the 

pixel size 𝑠 = 𝑎/2 (b) and 𝑠 = 𝑎/4 (c).     

 

The Figure S11 schematically illustrates the on-lattice representation, which converts a 2D atomic 

structure into a matrix. The conversion is achieved using a pixel grid, which divides the structure 

into uniform cells or pixels. For bcc structure, the largest grid we can use, which can fully distinct 

all lattices and yield the smallest voxel grid dimensionality, is 𝑠 =  𝑎/2, where 𝑎 is the lattice 

constant of the crystal, as shown in Figure S11b. In general, the structure domain can be equally 

divided into pixels with size 𝑠 = 𝑎/2𝑛, where 𝑛 =  1, 2 3…. For instance, Figure S11c shows the 

representation using pixel size 𝑠 = 𝑎/4. Once converting the model into pixels, we can encode 

each pixel based on the local atom type as illustrated in the main text. The selection of pixel size 

depends on the material structure alone without involving any hyperparameters which typically 

exist in other structure descriptors. This avoids the need to adjust and select any hyperparameters. 

Furthermore, it enables us to use the largest pixel that fully captures the local structure and 

chemical information, reducing the burden of storage and accelerating the training of machine 

learning models. In Figure S1 (on page 2), we illustrate the process of converting local atomic 

environments into digit matrices for a 3D crystal.  

 

Rotational non-invariance of neural map (digital matrix). For a given atomic configuration 

that includes a vacancy, there are eight migration paths associated with the vacancy in bcc crystal. 

The key challenge lies in how to predict these distinct migration barriers from one neural map 
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(atomic configuration). To address this, we introduce a ‘reference direction’, which aims to mark 

the diffusion path of interest. By performing rotation and mirroring operations on the atomic 

configuration, we can align the diffusion direction of interest with this reference. Hence, unique 

digital matrices and digital vectors can be generated for each individual diffusion paths, preserving 

structural symmetry. Figure S12 below exemplifies this process, showing how diffusion paths 2 

and 3 are aligned with the reference direction (indicted by red arrow). The Figure 2 of manuscript 

and Figure S3 details these operations and the resultant matrices for all diffusion directions. 

 

Figure S12. Aligning diffusion paths 2 and 3 with the reference direction through rotation. 

It produces two digital matrix and vectors corresponding to the two paths.     

 

This rotational non-invariant feature of digital matrix can also be understood from the handwritten 

digit recognition. For instance, when the MNIST database's handwritten '6' is rotated by 180 

degrees, it resembles a '9', as shown in Figure S13. Despite the pixel values in the matrices being 

unchanged, the orientation relative to the reference direction (denoted by the arrow) allows for the 

correct interpretation. 

The neural network model discerns the overall sequence and pattern in the digital matrix, not 

individual zeros. In a perfect crystal structure (bcc here), the digital matrix displays a consistent 

sequence of non-zero and zero digits. However, the introduction of a vacancy alters this structure 

by adding an additional zero at the corresponding location. This alteration in the digital sequence 

is what the neural network is trained to detect and learn from, enabling it to predict associated 

properties.      
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Figure S13. Rotational non-invariance for handwritten digit recognition. The image on left 

shows the pixel map of digit 6. On the right, the same pixel map has been rotated 180 degrees, 

indicating the digit 9. 
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Supplementary Note 2: Determining the cutoff distance  

Vacancy diffusion and associated activation barrier depend on local atomic environment. The 

impact of surrounding atoms on vacancy diffusion should decay as the distance increases. Beyond 

a certain critical distance, the impact becomes negligible. To determine the critical distance, we 

examine the dependence of model prediction performance on the cutoff distance. Figure S14a 

presents a radial distribution function g(r) from a NbMoTa alloy, which indicates that atoms 

within 7.5 Å are separated into eight shells. When using a larger cutoff distance, we consider atoms 

in higher order shells, thus more atoms. Figure S14b shows the dependence of number of atoms 

on the cutoff distance. The number of atoms increases from 8 to 112 when the cutoff distance 

increases from 3.0 to 7.5 Å (meaning we consider atoms in more shells), leading to a more 

informative local environment representation.  

For each cutoff distance, we create a dataset from four alloys, including Nb33Mo33Ta33, 

Nb50Mo25Ta25, Nb25Mo50Ta25 and Nb25Mo25Ta50. For each composition, we simulate atomic 

configurations comprising 2,000 atoms (i.e., lattice sites). Considering that each vacancy can 

migrate in one of eight possible directions, this results in 16,000 unique migration barriers per 

composition (2,000 vacancies  8 directions). Consequently, by studying four distinct 

compositions, we determine a total of 64,000 barriers (16,000 barriers per composition  4 

compositions). Table S2 summarizes all the dataset.  The dataset is split into two parts, with 80% 

used for training and 20% for validation. For each cutoff distance, we train a neural network with 

4 hidden layers and 128 hidden layer units. Figure S14c shows the mean absolute errors (MAEs) 

of prediction on both training and validation datasets at different cutoff distances. The validation 

error decreases from 0.117 eV to 0.036 eV as the cutoff distance increases from 3.0 to 7.5 Å. It 

almost converges at later stage from 7.0 to 7.5 Å, indicating that 7.5 Å is an effective cutoff 

distance for representing the local atomic environment.  However, we note that the neural network 

model and dataset have not reach a good balance for most cutoff distances, as evidenced by the 

gap between training and validation error. Further tuning of the network architecture can solve this 

problem. Nonetheless, our goal here is solely to demonstrate how the cutoff distance influences 

the diffusion barrier prediction using identical neural network model for all cases. We expect the 

conclusion will not change if we further adjust the neural network models at different cases.  
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Figure S14. Effect of cutoff distance on neural network prediction. (a) The radial distribution 

function g(r) of bcc NbMoTa. (b) The number of neighboring atoms surrounding a vacancy as a 

function of cutoff distance. (c) The machine learning prediction error as a function of cutoff 

distance has converged at 7.5 Å. The red and blue curve represents the training and validation 

mean absolute error (MAE), respectively. The error bars represent the standard deviations of model 

prediction errors using five-fold cross-validation. 
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Supplementary Note 3: Architecture of neural network and convolutional neural 

network  

The two critical parameters determining the architecture of a neural network include the number 

of layers, the number of neurons in each layer. To understand the influence of architecture on 

prediction performance, we train different neural networks using a dataset containing 46 

compositions. We compute and generate 736,000 vacancy barriers from these 46 compositions 

(16,000 barriers from each composition), and the Table S3 summarizes the compositions and 

dataset.  The dataset is split into two parts, 95% as training dataset and 5% as validation dataset. 

We train a set of neural networks with different numbers of hidden layers (from 1 - 4) and numbers 

of hidden layer units (16 - 256). We use 69,920 data points (10% of the whole training dataset) to 

train the networks and then compare the performance of different models on the validation dataset.  

Figure S15b shows the mean absolute errors of prediction for these models, and Figure S16 

presents a direct comparison between true values and predicted value from different neural 

network models. The prediction error decreases with either increasing the number of layers or 

neurons and begins to converge for the model with 128 neurons and 2 layers. This suggests that 

the second order interaction from two hidden layers is sufficient to capture the vacancy-atom 

interactions. Additionally, the convergence on 128 neurons has physical meaning as they can 

explicitly capture the 112 neighboring atoms of a vacancy. For modeling vacancy diffusion and 

B2 ordering in equimolar NbMoTa alloy, the 4-layer neural network model is adopted, owning its 

robustness in concentrated alloys. It should be noted that, for dilute alloys, a simpler version of the 

model with 2 layers suffices to accurately predict all barriers and the diffusion-mediated ordering 

behaviors. In this study on vacancy diffusion and B2 ordering in equimolar NbMoTa alloy, a 4-

layer neural network model is used due to its robustness in concentrated solid solutions. For dilute 

alloys, however, a simpler 2-layer model suffices to accurately predict all barriers and diffusion-

mediated ordering behaviors. 

In addition to the classic neural network, we have also trained a convolutional neural network 

(CNN) using the same datasets. Figure S17 depicts the structure of the CNN, which comprises one 

input layer, four convolutional layers, and one output layer. To the input layer, we feed the 3D 

neuron map (images), and in each of the four convolutional layers, we apply filters of size 

3 × 3 × 3. The number of filters used in the convolutional layers is 32, 64, 128, and 128, which is 

equivalent to the number of channels of the generated images. Consequently, the data dimension 

reduces to 1 × 1 × 1 × 128  from the original 9 × 9 × 9 × 1 . Following each convolutional 

operation, we apply batch normalization (before the activation function), which provides benefits 

such as a reduction of sensitivity to model parameter initialization, regularization. The Rectified 

Linear Unit (ReLU) serves as the activation function, and the data from the final convolutional 

layer is converted to a one-dimensional vector of length 128 before being passed to the output 

layer. The output layer, comprising a single neuron, predicts the diffusion barrier. The CNN model 

is trained for 100 epochs using the Adam optimizer with an initial learning rate of 0.001 and a 

batch size of 32. After each epoch, the model is evaluated on the validation dataset to monitor the 
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evolution of the loss, which is represented by the mean square error. If the validation loss fails to 

decrease after 10 consecutive epochs, the learning rate is decreased by a factor of 10. This smaller 

learning rate reduces oscillation, avoids divergence of the optimization, and contributes to 

convergence to the nearby minimum point. The minimum allowed learning rate is 1x10-5, as a 

learning rate that is too low can greatly slow down the training procedure and waste computational 

resources. Once the learning rate reaches the minimum value, it remains constant for the rest of 

the training process. The training procedure ends after 100 epochs, regardless of whether the 

learning rate has reached the minimum value. The parameters of the model with the best 

performance are saved for further use. 

 

 

 

 
Figure S15. Neural network prediction performance with different numbers of hidden layers 

and units. (a) For the neural network model, 46 compositions selected from the Nb-Mo-Ta 

compositional space for training. (b) Different neural network models are evaluated based on their 

prediction errors on the validation dataset.  
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Figure S16. Prediction performance of neural network models with varying hidden layers 

and the number of units. The prediction accuracy increases with increasing the number of hidden 

layers and units. 
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Figure S17. Architecture of the convolutional neural network. The model consists of one input 

layer, four convolutional layers, and one output layer.  
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Supplementary Note 4: Number of compositions for predicting the entire ternary 

composition space 

We select different numbers of compositions to train both neutral network and CNN models, in 

order to understand how many compositions are required to predict the entire compositional space. 

Figure S18a depicts the 46 compositions uniformly distributed in the compositional space. Figure 

S18b-d, illustrate 1, 4 and 10 compositions (red colored points) located at the center region of the 

compositional space, respectively. Each composition comprises 16000 barrier data points. For 1-

composition dataset, 80% and 20% data are used for training and validation respectively. For 4-

composition dataset, 90% and 10% data are used for training and validation respectively. For 10-

composition and 46-composition datasets, 95% and 5% data are used for training and validation, 

respectively. 

Figure S19 presents the prediction performance (i.e., MAEs) in an unseen equimolar NbMoTa 

alloy as function of number of compositions used for training models. The prediction error 

decreases rapidly when the number of training compositions increases from 1 to 4. When the 

number of compositions increases from 4 to 46, the prediction error is further lowered with a small 

amount. The trend indicates that the addition of data from dilute solutions (i.e., the corners of 

compositional space) can improve model prediction performance, but not as significant as 

concentrated solutions. The CNN model performance from 4-composition dataset (MAE = 0.026 

eV) is remarkable (the average barrier is around 1.5 eV), which implies that the CNN model has 

deciphered the chemical complexity and successfully linked it with diffusion barriers. As to the 

neural network models, it is worthwhile to note that the prediction errors barely change when we 

increase the number of hidden layers, suggesting the 4 layers of neural network are sufficient for 

the barrier prediction. Compared to neural network, the CNN shows enhanced performance with 

lower MAEs, implying the added convolutional layers capture the large-scale atomic patterns 

contributing to vacancy migration.  

It is worth nothing that the testing performance of the trained neural networks is evaluated using 

newly generated data from other (unseen) compositions, which are not used for training and 

validation. Figure S20 shows the testing results for these new compositions, Nb10Mo10Ta80, 

Nb20Mo60Ta20, Nb40Mo30Ta30, and the average MAE is smaller than 0.018 eV, implying the 

generalizability. Notably the neural networks trained using small configurations precisely predict 

diffusion barriers in large atomic configuration. For instance, the neural network preserves the 

consistent high accuracy for different sized systems containing 512, 2000, and 6750 atoms, 

indicating scalability.    
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Figure S18. Compositions used for building different training datasets. (a) depicts forty-six 

compositions occupying the NbMoTa compositional space uniformly. (b-d) depict one 

composition, four compositions, ten compositions (red-colored points) located at the center of the 

compositional space representing concentrated alloys. 

 
Figure S19. Prediction error of neural network (NN) and CNN as a function of the number 

of compositions used during training. The evaluation is done on previously unseen compositions 

in Nb-Mo-Ta, and the results indicate that including more than four compositions leads to a rapid 

convergence of the network's performance. 
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Figure S20. Performance of CNN in predicting diffusion barrier spectrum in unseen 

compositions and varying system sizes (scalability). Three compositions, including 

Nb10Mo10Ta80, Nb20Mo60Ta20, Nb40Mo30Ta30, and three systems containing 512, 2000, and 6750 

atoms are shown. The architecture of Convolutional neural network is illustrated in Figure S14.  
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Supplementary Note 5: Comparison with cluster expansion method  

The cluster expansion (CE)1,2 method is often used to predict thermodynamic properties of 

multicomponent systems, such as vacancy formation energy3. The total energy of a configuration 

is computed by summing up a series of clusters (for instance, single, pair, triplet, and large group 

of atoms). For kinetics problems such as vacancy diffusion, the governing property is the 

underlying diffusion activation energy ∆𝐸, i.e., the energy difference (barrier) between transition 

state and the initial energy minimum. Figure S1 schematically illustrate vacancy diffusion and its 

corresponding potential energy landscape. The process starts from an initial state 𝐸𝑖, through a 

transition state 𝐸𝑠, and leads to the neighboring local minimum, i.e., final state 𝐸𝑓. The CE has 

been adopted to predict the energies of local minimum states. However, addressing the transition 

state presents specific challenges in CE method.  

In the classic application of CE for predicting configurational energy, the initial critical steps 

involve designing unique clusters based on lattice symmetry and choosing an optimal cluster set, 

which can be a time-consuming process. For example, the property of vacancy can be influenced 

by the atoms in its 8th neighboring shell. It has been noted that it can take a number of weeks to 

months to select optimal clusters when the 8th nearest neighboring atoms is considered 4.  There 

have been attempts to use CE method for predicting saddle point energy in binary alloys4, and to 

our best of knowledge, only one study5 focusing on predicting vacancy barriers in compositionally 

complex alloys (ternary alloys). There are notable challenges associated with employing CE for 

diffusion barrier prediction. 

(i) Saddle point representation. To model the transition state (saddle point) for energy prediction 

using CE, the strategy is to introduce artificial atoms. In a binary system, the jumping species could 

be either atom type 1 or 2. To differentiate, two additional species, type 3 and type 4, are 

introduced. This increases chemical complexity and the intricacy of cluster design. In a N-

component system, N extra species need to be defined, leading to a total of 2N+1 species (including 

vacancy).    

(ii) CE prediction performance in ternary alloy. To predict vacancy diffusion barrier in ternary 

system (Al-Mg-Zn), the CE is combined with a quartic function of the reaction coordinate5. 

Comparing with the predicted diffusion barriers with the ground truth obtained from NEB 

calculation, the mean error of CE is 0.0451 eV, approximately 10% of the average actual barrier. 

This is contrasted with our model, as shown in Figure 2 of the manuscript, which achieves a 

significantly lower mean error of 1.2%, an order of magnitude lower than that of CE.  

We discuss some key features associated with our neural network kinetics model, which render its 

highly accurate barrier prediction. It is noted that the model performance in highly accurate barrier 

prediction is not just for a single alloy composition but across a wide range of varying alloy 

compositions (the entire compositional space of the ternary alloys).  
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a. Neuron map representation of atomic structure and chemistry:  The neuron map (on-lattice) 

representation precisely captures atomic structure and composition. Its dimension O(N) scales 

linearly with the number of atoms N, and has the lowest dimensionality possible as a crystal 

descriptor. Critically, determining the neuron map is simple and involves simple calculation 

(avoiding the painstaking parameter tuning in other methods, such as cluster design in CE). 

b. Predict performance: The model exhibits high accuracy in barrier prediction. For instance, the 

mean absolute errors (MAE) for dilute solution Nb90Mo5Ta5 and concentrated solution 

Nb33Mo33Ta33 are 0.011 and 0.021 eV, respectively. The error is smaller than 1.2% of the true 

diffusion barrier. 

c. Generalization and predicting in entire compositional space: More importantly for 

compositionally complex materials possessing a vast compositional space, the current method, 

trained on dozens of compositions, shows remarkable predictability for new (previously unseen) 

compositions, allowing accurate mapping of the entire ternary space (Figure 2c of manuscript). 

d. Scalability and efficiency:  Our model demonstrates scalability with system size. This size 

scalability is shown by accurate barrier predictions in larger NbMoTa systems. For example, the 

neural network preserves a consistent high accuracy for different sized systems containing 512, 

2000, and 6750 atoms.  

e. High efficiency in modeling diffusion: neural map originates from its simplicity to mirror 

vacancy jumps through the swapping of neurons (digits). With only one-time conversion of atomic 

configuration to neuron map, vacancy jumps and chemical evolution can be simulated by swapping 

two digits of neural map. In this way, millions of vacancy jumps can be modeled efficiently, with 

each jump iteration involving the action of just two neurons. Using one single CPU, the model 

evolves 10 million diffusion jumps in a large system containing 128,000 atoms within two days.  

In contrast to the descriptors used in machine learning potentials, our neuron map, representing 

the entire system, has the smallest possible dimension of O(N). This small dimensionality as a 

system descriptor, coupled with our neuron kinetics operation, makes modeling vacancy diffusion 

at this fast speed, surpassing those of classical MD and MC algorithms. 

In summary, as compared with traditional CE, our introduced neuron map representation and the 

computational scheme are more accurate (low error prediction), capable of predicting vacancy 

barriers in the entire space using small training data (Figure 2c of the manuscript), and efficient 

and fast (Figure 5, evolving 10 million jumps in large system). 
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Supplementary Tables  

 

Table S2. Dataset for determining the cutoff distance 

Index Composition System size 

(atoms) 

Number of barriers 

(NEB calculation) 

Total number of 

barriers 

1 Nb33Mo33Ta33 2,000 16,000 

64,000 
2 Nb50Mo25Ta25 2,000 16,000 

3 Nb25Mo50Ta25 2,000 16,000 

4 Nb25Mo25Ta50 2,000 16,000 

 

 

Table S3. Dataset used for predicting vacancy diffusion barriers in the entire Nb-Mo-Ta 

space 

Index Composition System size 

(atoms) 

Number of barriers 

(NEB calculation) 

Total number of 

barriers 

1 Nb5Mo5Ta90 2,000 16,000 

736,000 

2 Nb5Mo22Ta73 2,000 16,000 

3 Nb5Mo39Ta56 2,000 16,000 

4 Nb5Mo56Ta39 2,000 16,000 

5 Nb5Mo73Ta22 2,000 16,000 

6 Nb10Mo10Ta80 2,000 16,000 

7 Nb10Mo27Ta63 2,000 16,000 

8 Nb10Mo44Ta46 2,000 16,000 

9 Nb10Mo61Ta29 2,000 16,000 

10 Nb15Mo15Ta70 2,000 16,000 

11 Nb15Mo33Ta52 2,000 16,000 

12 Nb15Mo51Ta34 2,000 16,000 

13 Nb20Mo20Ta60 2,000 16,000 

14 Nb20Mo40Ta40 2,000 16,000 

15 Nb5Mo90Ta5 2,000 16,000 

16 Nb22Mo73Ta5 2,000 16,000 

17 Nb39Mo56Ta5 2,000 16,000 

18 Nb56Mo39Ta5 2,000 16,000 
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19 Nb73Mo22Ta5 2,000 16,000 

20 Nb10Mo80Ta10 2,000 16,000 

21 Nb27Mo63Ta10 2,000 16,000 

22 Nb44Mo46Ta10 2,000 16,000 

23 Nb61Mo29Ta10 2,000 16,000 

24 Nb15Mo70Ta15 2,000 16,000 

25 Nb33Mo52Ta15 2,000 16,000 

26 Nb51Mo34Ta15 2,000 16,000 

27 Nb20Mo60Ta20 2,000 16,000 

28 Nb40Mo40Ta20 2,000 16,000 

29 Nb90Mo5Ta5 2,000 16,000 

30 Nb73Mo5Ta22 2,000 16,000 

31 Nb56Mo5Ta39 2,000 16,000 

32 Nb39Mo5Ta56 2,000 16,000 

33 Nb22Mo5Ta73 2,000 16,000 

34 Nb80Mo10Ta10 2,000 16,000 

35 Nb63Mo10Ta27 2,000 16,000 

36 Nb46Mo10Ta44 2,000 16,000 

37 Nb29Mo10Ta61 2,000 16,000 

38 Nb70Mo15Ta15 2,000 16,000 

39 Nb52Mo15Ta33 2,000 16,000 

40 Nb34Mo15Ta51 2,000 16,000 

41 Nb60Mo20Ta20 2,000 16,000 

42 Nb40Mo20Ta40 2,000 16,000 

43 Nb50Mo25Ta25 2,000 16,000 

44 Nb25Mo50Ta25 2,000 16,000 

45 Nb25Mo25Ta50 2,000 16,000 

46 Nb33Mo33Ta33 2,000 16,000 
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