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Abstract
The discovery of complex concentrated alloys (CCA) has unveiled materials
with diverse atomic environments, prompting the exploration of solute segreg-
ation beyond dilute alloys. However, the vast number of possible elemental
interactions means a computationally prohibitive number of simulations are
needed for comprehensive segregation energy spectrum analysis. Data-driven
methods offer promising solutions for overcoming such limitations for mod-
eling segregation in such chemically complex environments (CCEs), and are
employed in this study to understand segregation behavior of a refractory CCA,
NbMoTaW. A flexible methodology is developed that uses composable com-
putational modules, with different arrangements of these modules employed
to obtain site availabilities at absolute zero and the corresponding density of
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states beyond the dilute limit, resulting in an extremely large dataset contain-
ing 10 million data points. The artificial neural network developed here can
rely solely on descriptions of local atomic environments to predict behavior at
the dilute limit with very small errors, while the addition of negative segreg-
ation instance classification allows any solute concentration from zero up to
the equiatomic concentration for ternary or quaternary alloys to be modeled
at room temperature. The machine learning model thus achieves a significant
speed advantage over traditional atomistic simulations, being four orders of
magnitude faster, while only experiencing a minimal reduction in accuracy.
This efficiency presents a powerful tool for rapid microstructural and interfacial
design in unseen domains. Scientifically, our approach reveals a transition in the
segregation behavior of Mo from unfavorable in simple systems to favorable
in complex environments. Additionally, increasing solute concentration was
observed to cause anti-segregation sites to begin to fill, challenging conven-
tional understanding and highlighting the complexity of segregation dynamics
in CCEs.

Supplementary material for this article is available online
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1. Introduction

The microstructural design of materials is crucial for applications that demand high perform-
ance and/or operation under extreme conditions [1]. The design challenge lies in understanding
andmanipulating behaviors at the atomic level, where the arrangement of atoms and their inter-
actions dictate the resultant macroscopic properties of the material. In this context, chemically
complex environments (CCEs), which include solute-solute interactions and thermal effects,
present a unique opportunity for investigation, with complex concentrated alloys (CCAs) or
high entropy alloys serving as examples. Among materials exhibiting CCEs, refractory CCAs
(RCCAs) stand out as they are not only superior in high-temperature applications compared
to Ni-based superalloys [2] but also offer a rich landscape for studying phenomena such as
chemical short-range ordering (CSRO) and solute clustering behavior [3–5]. The equimolar
NbMoTaW RCCA, in particular, has been extensively studied due to its exceptional high-
temperature strength and its ability to maintain a stable single-phase at elevated temperatures
[6, 7].

Prior study of NbMoTaW and other RCCAs has shed light on the interplay between CSRO
and interface structure on grain boundary segregation [8–11], an important behavior that dic-
tates mechanical properties such as strength, ductility, and fracture. The findings of these stud-
ies highlight the complexity of microstructural modification in RCCAs, characterized by both
appearance of distinct CSRO patterning [12, 13] and the competition among multiple solutes
for the same lattice sites [14–16]. This competition leads to a wide array of interesting segreg-
ation phenomena, with chemical patterning amplified by variations in site occupancy prob-
ability and the consequent impact on embrittlement at grain boundary sites [17, 18]. These
variations are attributed to differences in interface structure and interactions with neighbor-
ing boundaries within the polycrystalline grain boundary network [14, 15]. The non-uniform
distribution of segregation energies with such a network results in a complex pattern of site
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availability for segregation. Furthermore, prior investigations have demonstrated that in the
transition regions from interfaces to bulk sites, the compositional variation is notably affected
by the presence of interfaces [19, 20], with distinct structural ordering preferences and exten-
ded segregation zones being observed. This last finding indicates that segregation behavior
is not confined to the immediate interface but instead extends into adjacent zones, resulting
in areas that do not exhibit characteristics typical of either pure interface or bulk behavior.
This diversity of interfacial behaviors is magnified in CCEs due to the increased number of
principal elements, making the prediction and control of segregation behaviors at interfaces a
considerable challenge.

Early work in RCCAs was mostly focused on equiatomic systems [7, 21], which repres-
ents only a single composition out of a huge possible set, leaving many off-equiatomic sys-
tems largely explored. The increased complexity associated with CCEs can be understood by
thinking about chemical interactions between intra-species (between the same species) and
inter-species (between different species) pairs. In a CCE, the interactions between a binary
pair (e.g. Nb-Mo) when only these two elements are present in a system are not chemically
equivalent to the same pair when additional elements are present. Therefore, to understand
the effect of solute segregation, these interactions must be treated as a large collection of A-B
type interactions, where B is a single element as solute (e.g. Ta), and A is the ‘base’ material.
For example, A could be a single element (e.g. Mo), or a mixture of elements (e.g. Nb0.5Mo0.5
or Nb0.34Mo0.33Ta0.33). This distinction enables the study of different concentrations of B as
possible solute in various A bases. Furthermore, since the various chemical environments any
given dopant can be surrounded by are also accounted for in a multi-element alloy base, the
segregation behavior in the non-dilute case is also captured by such a framework. In a qua-
ternary system, there are 32 possible A-B combinations (4 intra-species and 28 inter-species).
Inter-species interactions can be divided into three subparts, with A comprising of a single
element (A-B representing a binary system), or A as a multi-element alloy (A-B representing
a ternary or quaternary system). For an A-B pair below the dilute limit, the number of thermo-
dynamically different interfacial sites can be huge depending on the size of the model and ratio
of interface to bulk sites. For instance, the Wagih and Schuh study [22] had to treat ∼415 000
interfacial sites for the Al-Mg binary system with a polycrystal of 36 nm edge length and an
atomic site fraction of∼15%. The edge length refers to the dimension of the cubic simulation
cell used to construct the polycrystal, which contains 96 randomly oriented grains. The size
of the polycrystal was selected through comparisons of disorientation distributions and effect-
ive segregation energies to ensure a representative sample of the material’s grain boundary
network. If a similar direct segregation site simulation was employed for a quaternary alloy,
restricted to the dilute limit, the number of simulations to obtain the spectrum of segregation
energies at absolute zero needs to be multiplied by the number of inter-species interactions,
resulting in approximately 11 million simulations. For CCEs with a broad range of concen-
trations, this number is virtually infinite, but for a more practical application the following
scenario can be considered. Assuming an equimolar base at room temperature, if the solute
concentration is varied in 0.25 at.% increments up to equimolar composition, the number of
concentrations to be considered are 200 for binaries, 135 for ternaries and 100 for quatern-
ary, resulting in∼4.8 billion simulations. Considering that this calculation is for an equimolar
base at a certain temperature, changing any of these parameters will increase the number of
simulations exponentially.

Data-driven methods offer a promising avenue for constructing structure-property models
that can overcome the limitations of current predictive tools arising from the combinatorial
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increase problem. These methods, which have been leveraged in past research efforts to per-
form tasks such as phase classification [23–29], search for ideal structural descriptors [30–
39], and study of metastable structures and synthetic microstructure generation [40–42], can
potentially unravel the intricate patterns of segregation behavior and microstructural proper-
ties across a broad compositional landscape. While previous studies have employed neural
networks and other advanced algorithms to model segregation patterns [43–48], accurately
predicting interfacial segregation in the CCEs at non-zero temperatures remains a challenge.

The present work introduces a methodology capable of predicting interfacial segregation
within CCEs, employing only the descriptions of local atomic environments. The thermody-
namic framework for binary alloy systems faces challenges in CCEs due to the complex inter-
actions amongmultiple elements. This study first introduces an expansion to such a framework
for CCEs, then presents a flexible methodology using composable computational modules.
These modules include the generation of data through atomistic simulations and the applica-
tion of optimized machine learning (ML) models, including artificial neural networks (ANNs)
and gradient boosted decision trees. Thesemodules can be rearranged depending on the desired
output data, to study segregation in CCEs and accommodate various compositions and temper-
atures. Tailored computational pipelines are proposed for a few example applications, acceler-
ating the transition towards ML-driven predictions in CCEs. Utilizing these pipelines, diverse
trends in segregation energies are observed, highlighting the complexity of predicting inter-
facial segregation in CCAs. For instance, a transition in the segregation behavior of Mo is
observed, shifting from unfavorable segregation in simple systems to increasingly favorable
segregation as the alloy compositional complexity grows. Moreover, our methodology uncov-
ers the complex dynamics of solute-solute interactions and thermal effects in CCEs, revealing
that with increasing solute concentration anti-segregation sites begin to fill up, leading to a
more complex segregation landscape than previously understood. This challenges the expect-
ation of a narrowing trend in segregation behavior seen in binary alloys, suggesting a revised
mechanism where even energetically favorable sites are not always occupied and highlighting
the intricate interplay of solute concentrations as well as their impact on material properties in
CCEs. This study not only contributes to the field by offering a robust tool for researchers to
explore the vast compositional space of CCEs but also aids in the design and development of
CCEs with tailored microstructural attributes of new materials for the technological demands
of the future.

2. Methods

2.1. Thermodynamic framework

A typical thermodynamic framework for interfacial solute segregation in binary alloys at the
dilute limit assumes non-interacting solutes, which can be captured by the Gibbs free energy
difference between bulk and interfacial sites. This relationship can be described by theMcLean
isotherm [49]:

∆Eint
seg = Eint

b −Ebulk, (1)

where∆Eint
seg represents the interfacial segregation energy, E

int
b is the binding energy at a solute-

occupied interfacial site, and Ebulk is the binding energy within the bulk matrix. This model
simplifies the segregation energy to a single value, or a single site type, independent of solute
concentration and temperature. However, experimental evidence has shown that this single-
value approach does not accurately describe segregation behavior [50]. Consequently, the
White-Stein-Coghlanmodel was introduced to extend this model to a multiple site-typemodel,

4



Modelling Simul. Mater. Sci. Eng. 32 (2024) 065011 D Aksoy et al

which accounts for the spectral distribution of segregation energies at various interface sites,
which describes site availabilities at absolute zero temperature [50]. In this context, a ‘type’
refers to the distinct atomic configurations at the grain boundary, each with unique binding
energies that influence segregation behavior. For each type of interfacial atom i, the model
defines a site-specific concentration, Xint

i , as a function of the bulk solute concentration, Xbulk,
and the site-specific segregation energy,∆Eint

i,seg:

Xint
i =

Xbulk exp

(
−∆Eint

i,seg

kT

)
1−Xbulk +Xbulk exp

(
−∆Eint

i,seg

kT

) , (2)

where k is the Boltzmann constant and T is the absolute temperature. This model employs
Fermi-Dirac statistics, which dictates that each interfacial site can be occupied by at most
one solute atom, with the occupancy being temperature-dependent. The probability of site
occupancy is then given by:

Pint
i = Fint

i X
int
i , (3)

where Fint
i represents the DOS for the interfacial sites of type i, calculated by the ratio of the

number of interface sites with segregation energy ∆Eint
i,seg to the total number of interfacial

sites:

Fint
i =

Nint
i∑
iN

int
i

, (4)

while the thermodynamic framework described above offers a robust foundation for under-
standing solute segregation in binary alloy systems, its application to CCEs has significant
challenges. The traditional binary approach does not capture the synergistic and antagonistic
effects between multiple species in CCEs. Therefore, to accurately represent the inherently
dynamic and localized nature of interfacial segregation within these multi-element systems,
the model must integrate the combined influence of various solute atoms on segregation beha-
vior, deviating from the ideal McLean model. Furthermore, in binary systems, reference states
are well-defined as the pure base element, facilitating straightforward calculations of segreg-
ation energies and site-specific behaviors. However, in alloys composed of more than two
elements, such as CCAs, the definition of reference states becomes non-trivial due to the mul-
titude of elemental interactions. Since a clear reference state cannot be defined unlike the
binary case, the White-Stein-Coghlan model requires adaptations to reflect the chemical com-
plexity of CCEs. To accomplish this, we adopt a flexible methodology that involves creating
pipelines tailored for different applications through the use of composable computational mod-
ules shown in figure 1. These modules correspond to different procedures and tools, such as
sample preparation, atomistic simulations (A1-A3), preprocessing, and ML techniques (M1
and M2). Different arrangements of these modules, referred to as pipelines, can be used to
obtain site availabilities at absolute zero as well as DOSs in CCEs with or without atomistic
simulations. In the next sections, these modules will be introduced and then the pipelines and
their corresponding module arrangements for different applications will be described.

2.2. Sample preparation and bases

The first module in figure 1, the regular solid solution (RSS) module, involves the selection
of a material system (NbMoTaW for this work) and the creation of the simulation model.
Computational models of polycrystalline NbMoTaW were prepared using Atomsk [51], an
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Figure 1. Illustration of composable computational modules. After the selection of a
material system, random solid solution models (RSS module) are annealed and relaxed
(A1 module), while site availabilities (A2 module) and density of states at room temper-
ature (A3 module) are calculated via atomistic simulations. The preprocessing module
involves principal component analysis to reduce the dimensionality of vectorized local
atomic environments. The methodology utilizes artificial neural networks (M1 mod-
ule) and gradient-boosted decision trees through XGBoost (M2module) for predictions,
addressing the complexity of multi-elemental interactions and various conditions. The
dashed lines enclosing the modules represent the type of computational method used.

open-source program for creating atomic-scale models. A 50× 50× 50 Å
3
model comprising

four randomly oriented grains was generated. This model and grain size selection was based
on the assumption, substantiated by findings in binary systems [52], that in a quaternary alloy,
the chosen dimension is sufficiently large to ensure that segregation behavior remains relat-
ively unaffected by grain size, owing to the reduced fraction of grain boundaries. The choice
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of model size was validated through a comparative analysis with a larger 150× 150× 150 Å
3

model for the equiatomic quaternary system, demonstrating the representativeness of the
smaller model in capturing segregation energy distributions. Detailed discussion and support-
ing data are provided in supplementary note 1.

In the second module, A1, the simulation model created in the RSS module is utilized to
create different bases, 14 in total for this study, which represent all possible equiatomic com-
binations. These bases (A) can be either single element (Nb, Mo, Ta, and W) or multi-element
equiatomic alloys (e.g. NbMo andMoTaW). The construction process involved the creation of
a polycrystal with one element (Nb) initially, preserving the same orientation while creating
other bases, resulting in 14 bases that match the corresponding average lattice parameters of
the alloying system. These bases serve as the starting point for subsequent simulations, so that
solute species (B) can be substituted.

In the current study, a combination of molecular statics and hybrid Monte Carlo/molecular
dynamics (MC/MD) simulations were employed with the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) software package [53]. OVITO was used for
atomic visualizations [54], while data visualization was accomplished using Python librar-
ies Matplotlib [55] and Seaborn [56]. The interatomic potential used in this work [57] was
derived from a ML interatomic potential based on the Moment Tensor Potential methodology
[58]. This approach, involving invariant vectors to represent local atomic environments, was
validated against density functional theory simulations by Yin et al [59], showing good agree-
ment in properties such as melting temperature, unstable stacking fault energy, and elastic
constants, as well as prediction of the expected CSRO behavior [57].

Composition adjustments were made by randomly substituting atoms of different types
until the desired composition was achieved. The system was then heated to room temperat-
ure under a canonical (NVT) ensemble for 250 ps, followed by controlled cooling to 0 K at
a rate of 3 K ps−1, before finally a conjugate gradient energy minimization procedure was
applied. This process yielded equimolar random solid solution alloy systems comprised of
one, two, and three constituent elements. This procedure was replicated across all 14 bases
that have been established for this study. A key advantage of this approach lies in its flexib-
ility; the same base can be repurposed to study different solutes, such as substituting Ta for
W as the potential segregating species in NbMo, or to examine varying solute concentrations.
Furthermore, this method allows for the examination of these configurations at various tem-
peratures. This strategy enables a categorization of elemental interactions and paves the way
for investigations of segregation behavior in different combinations of bases and solutes.

2.3. Site availabilities at absolute zero

In the A2 module, site-specific segregation energies for compatible solute atoms were determ-
ined for each base configuration. The process involved substituting a solute atom at interface
sites sequentially, followed by an energy minimization to relax the model. The interfacial
segregation energy for each site was derived from the difference in energy after substituting
the solute atom at an interface site compared to a bulk site. Given the heterogeneous distribu-
tion of principal elements in a CCA, calculating a representative bulk binding energy required
first establishing a distribution of bulk binding energies for each elemental combination. These
energy distributions are shown in supplementary note 2. Considering the entire spectrum asso-
ciated with bulk energies would complicate the analysis, as it introduces two distributions from
which to calculate segregation energies. However, a simplification was made because the ener-
gies at the fringes of the distributions, shown in figure S2, do not significantly affect segreg-
ation behavior, as they are less frequent, and those closer to the mode have a lower energy
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difference compared to the mode (around 0.3 eV), which is detailed in supplementary note 2.
Therefore, the mode of these distributions was selected as the representative bulk atomic con-
figuration, which corresponds to the most frequent bulk site type in the system. For example, in
a Nb0.5Mo0.5 base, the representative bulk atom for Nb was identified, and the system’s energy
is calculated following the substitution of a W atom at this bulk site after its subsequent relax-
ation. A similar procedure was repeated for Mo as a bulk site. The interface site substitution
spectrum is thus found by comparing this representative bulk binding energy to the local site
energy for each interface site to calculate the segregation energy. This approach was replic-
ated for each interface site, alternative solutes, and across all base configurations, resulting
in the generation of site availability distributions at absolute zero. Strict energy minimization
procedures with very low energy tolerance (10−18) were employed to determine the energies
related to segregation behavior, as performed by Wagih and Schuh [22].

2.4. CCEs

In the A3module, solute atomswere first randomly substituted into the host matrix without dis-
tinguishing between interface and bulk sites, until the desired alloy composition was achieved.
MC/MD simulations at room temperature were then conducted to calculate site occupancies.
The simulations involved 1000MC steps for everyMD step, tracking the change in atomic frac-
tions, with solutes being assigned to random sites and aMetropolis algorithm used to determine
if site jumping occurs. The MD portion was performed under an isothermal–isobaric (NPT)
ensemble. In contrast to the A2 module simulations which disregarded composition effects by
only probing the physics of segregation at the dilute limit, these MC/MD calculations inher-
ently incorporate solute-solute interactions. To effectively capture the atomic environments in
CCEs and translate to a format conducive for ML analysis, a binary classification was applied
to each interface site within the equilibrated configuration after MC/MD simulations, with a
label of ‘1‘used for occupation by a solute atom and a label of ‘0’ used otherwise. Binary
designation of these states forms an index for evaluating extent of negative segregation, the
redistribution process where segregated solutes segregate back into the bulk, revealing devi-
ations from initially anticipated segregation patterns influenced strictly by preferential site
occupancy.

The binary descriptions of the segregation states obtained through this matching procedure
are referred to as the MC/MD states. This data was acquired for all intended solute concentra-
tions, which was investigated in 5 at.% increments at room temperature. As demonstrated pre-
viously, simulating smaller increments exponentially increases the computational overhead,
which also substantiates the need for MLmethods. To condense the simulation workload, base
atoms were presumed to maintain an equimolar concentration, with only the solute concentra-
tions varying. As an example, for a ternary system targeted at a 30 at.% solute concentration
of Ta, the two base elements were adjusted to 35 at.% each.

2.5. Preprocessing

The initial step related to data preprocessing for ML algorithm training requires vectorization
of the local atomic environments through structural descriptors that satisfy certain properties:
(1) permutation invariance, (2) rotation invariance, and (3) translation invariance [60]. Local
atomic environment descriptors previously reported in the literature include atom-centered
symmetry functions [61], the coefficients of the bispectrum of the atomic neighbor density
functions [62], rotationally covariant tensors [58] for developing Moment Tensor Potentials
[57, 60], and the smooth-overlap of atomic positions (SOAP). In this work, SOAP vectors
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Figure 2. Principal component analysis of SOAP vectors for local atomic environ-
ment representation. Individual explained variance by each principal component and the
cumulative explained variance are shown as filled black boxes and a black line, respect-
ively. The first ten components capture 99.5% of total variance, effectively representing
local atomic structures for subsequent machine learning analysis.

were selected, since these vectors ensure that the local atomic environments were represented
in a manner that is consistent and invariant to permutation, rotation, and translation, surpass-
ing the capabilities of other conventional structural descriptors (e.g. atomic volumes) that are
typically limited to first nearest neighbors [63]. SOAP vectors for these random solid solution
models were calculated using atomic simulation environment (ASE) and QUIP libraries [64,
65], employing a method similar to that described in [66]. Moreover, the use of SOAP vectors
supports effective dimensionality reduction, allowing for a computationally efficient approach
while retaining critical information about the atomic environments. Principal component ana-
lysis (PCA) was used for dimensionality reduction, reducing the number of SOAP vectors,
thereby decreasing the time and computational demand for the training phase. The PCA ana-
lysis is visualized in figure 2, where individual bars indicate the variance explained by each
principal component, while the line shows the cumulative variance. The first ten components
were used to represent the local atomic environments, based on the trade-off between compu-
tational efficiency and maintaining the integrity of the original high-dimensional data, as these
10 components account for 99.5% of the explained variance within the dataset.

Following the vectorization of local atomic environments, the datasets for regression or
classification tasks were prepared. The resulting datasets contained over 10million data points.
The datasets were then standardized using a feature scaler to remove the mean and scale to unit
variance. For the regression task in module M1, SOAP vectors served as inputs with segrega-
tion energies as targets, and the dataset was shuffled and divided into train, validation, and test
datasets with percentages of 70%, 20%, and 10%, respectively. For the classification task in
M2, both SOAP vectors and segregation energies were used as inputs, contingent on the solute
concentrations and temperatures, while the targets were designated as the MC/MD states. The
dataset, after shuffling, was split into training and test datasets with percentages of 80% and
20%, respectively, employing stratification to maintain class proportionality.
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2.6. Predictive modeling with ML

The M1 module aimed to link the interfacial segregation behaviors at the dilute limit to local
atomic environments through the application of ANNs. Following preprocessing, the neural
network architecture was designed for regression analysis. The metric to assess the regression
model’s performance was selected as the mean squared error (MSE), which was favored over
mean absolute error (MAE) due to the spectral nature of segregation energies and the ability
of MSE to prevent the cancellation of positive and negative values associated with segregation
and anti-segregation sites [67]. Additionally, MSE amplifies larger errors, which are indicative
of the extremities found in the skew-normal distribution of segregation energies in polycrystals
[15].

The regression analysis employed Python libraries Tensorflow and Keras. The constructed
neural network, a sequential model typically used for nonlinear complex problems, included
batch normalization and dropout at a rate of 0.2 to enhance model performance and reduce
overfitting. The hidden layers used the rectified linear unit (ReLU) activation function, while
the output layer utilized a linear activation. MSE served as the loss function, with the Adam
optimizer being employed. Training included early stopping and model checkpoint callbacks
for enhanced efficiency. Hyperparameter optimization was conducted initially through a ran-
domized search with 20 iterations, followed by a more targeted grid search. Parameters such as
the number of hidden layers, number of neurons, learning rate, and optimizer type were tuned
to improve model performance. Parameters related to SOAP vectors were also optimized dur-
ing the hyperparameter tuning procedure, where a selection of 12 basis functions for angular
and 12 for spherical interactions was found to yield the best accuracy with a 1 Å Gaussian
smearing width of atom density within a 6 Å cutoff. PCA was then applied for dimensional-
ity reduction to 10 principal components, facilitating faster training and prediction times with
reduced computational resources at a slight trade-off in accuracy (∼2%–3% depending on the
case), resulting in a different set of SOAP descriptors for each base material due to the many-
body nature of SOAP formality. Cross-validation involving a split of the dataset into 5 parts
was used during the hyperparameter tuning process to validate the robustness of the hyper-
parameter combinations. The final hyperparameters of the optimized model are presented in
supplementary note 3.

In the second module of the ML block, designated as M2, a ML model was trained that tar-
geted the binary classification of the MC/MD states. Extreme Gradient Boosting (XGBoost)
[68], an optimized decision tree-based model that employs gradient boosting, was chosen for
this task. Decision trees, which facilitate recursive partitioning, adapt to nonlinear data struc-
tures, while gradient boosting enhances model accuracy by combining weak learner predic-
tions sequentially. Additionally, XGBoost was selected due to its high computational effi-
ciency and capability to handle large datasets effectively, providing robust performance with
relatively low overfitting [68]. The preprocessing steps previously described were similarly
utilized here, with the distinction that segregation energies are now incorporated as additional
inputs, alongside the MC/MD states serving as the targets. The output layer is characterized
by a logistic activation function, which predicts the occupancy state of an interface atom. The
model’s performance was assessed using the negative log-likelihood function as a performance
metric, which aligns the predicted class probabilities with the true class distribution, thereby
maximizing the likelihood of observing the correct class labels. XGBoost that was trained
on the dataset utilized early stopping to mitigate overfitting. The model’s performance was
assessed using a confusion matrix and classification report on both training and test datasets,
ensuring balance in target classes. Bayesian optimization [69] was applied to optimize para-
meters such as gamma (minimum loss reduction to split), maximum tree depth, learning rate,
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Figure 3. Modeling pipelines tailored for different applications. Two pipelines previ-
ously developed for binary systems are designated as ‘Standard’ yet are expanded for
CCAs in this work: (a) The atomistic simulation pipeline for determining site availabil-
ities at absolute zero and DOSs in chemically complex environments, and (b) the hybrid
ML/atomistic simulation pipeline for predicting site availabilities. Proposed pipelines in
this work (c) for predicting DOSs beyond the dilute limit, which utilizes a state matching
procedure to determine instances of negative segregation, and (d) for predicting DOSs
beyond the dilute limit from the predicted site availabilities, representing a significant
step towards removing time-consuming atomistic simulations from the analysis. The
dashed lines enclosing the modules represent the type of computational method used.

and minimum child weight (minimum sum of weights to split), followed by a grid search
algorithm for fine-tuning the model parameters, as shown in supplementary note 4.

2.7. Pipelines tailored for various applications

Figure 3 displays four example configurations of the composable computational models.
Figures 3(a) and (b) depict pipelines previously developed for calculating site availabilities
and DOSs in binary alloys [66] and for predicting site availabilities using ML techniques [44],
respectively. For binary alloys, the A1 module represents a single-element base. An extension
of these methodologies to CCAs is proposed in this work, which involves the use of multiple
bases. As previously discussed, this necessitates defining reference states for each solute across
different bases. Figure 3(a) describes a pipeline based on direct simulations, employing an RSS
simulation model to generate undecorated bases in their relaxed states. This determines the site
availabilities and DOSs beyond the dilute limit. The pipeline in figure 3(b) introduces an ML
approach, which is trained using site availabilities from atomistic simulations. The model then
uses these predicted site availabilities to approximate segregation spectra and provide rapid
and accurate predictions for site availabilities. To the best of the authors’ knowledge, an ML
pipeline for predicting DOSs in CCEs has not been previously attempted.

The pipeline shown in figure 3(c) addresses this key opportunity by applying the state
matching procedure proposed in this study to determine MC/MD states that indicate segrega-
tion or negative segregation behavior. The binary nature of these states allows the problem to
be framed as a classification task, suitable for ML techniques. This pipeline marks progress in
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predicting DOSs in CCEswithout fully eliminating atomistic simulations for site availabilities.
Advancing further, figure 3(d) illustrates a pipeline that seeks to obviate the need for atomistic
simulations altogether. It employs ML to predict site availabilities, which are then combined
with vectorized local atomic environments to predict DOSs in CCEs at any solute concen-
tration. This pipeline indicates a substantial move towards an entirely ML-driven approach,
enabling the exploration of segregation in CCEs without costly and time-consuming atomic
scale simulations.

3. Results and discussions

3.1. Site availabilities at absolute zero

In amulticomponent system,while some pair-interactionsmight seemingly average out, invok-
ing a mean-field-like approximation, the actual methodology diverges by capturing individual
A-B interactions, site-dependent behaviors, and the energy landscapes across different alloy
compositions. The segregation spectra for each base-solute (A-B) type interaction (A as single
element representing a binary interaction, and A as a multi-element alloy corresponding to
ternary and quaternary interactions) in the NbMoTaW RCCA (obtained through the pipeline
depicted in figure 3(a)) are shown in figure 4. These segregation energies will be referred to
as ‘true’ energies to signify that these were obtained from simulations, as opposed to the pre-
dicted energies obtained fromMLmodels. A diverse array of segregation behaviors is demon-
strated in figure 4, which highlights the necessity for an expanded approach in the predictive
modeling of interfacial segregation within CCAs. Traditional models may be insufficient in
capturing these complex behaviors since this requires identification of this behavior for the
same solute in different bases. For example, the effect of CSRO is apparent in the case where
Mo is the solute atom in Ta, Nb0.5Ta0.5, and Nb0.33Ta0.33W0.34 bases, which are marked with
red rectangles in figure 4. The binary case (Ta as base, Mo as solute) shows a distribution that
consists of almost entirely anti-segregation sites, which could be originating from the strong
cluster formation tendencies of Mo and Ta atoms structured as B2 clusters [5, 70]. This tend-
ency persists in figure 4(d) for the equiatomic MoTa base, where intermetallic formation in the
bulk region is more pronounced than in the interface region. However, with the introduction of
Nb to the system (Nb0.5Ta0.5 as base, Mo as solute), Mo segregation becomes more favorable.
In the quaternary case (Nb0.33Ta0.33W0.34 as base, Mo as solute), the inclusion of W atoms
further pushes the distribution to left, resulting in a strong favorable segregation peak for Mo.
For this RCCA, Ta-W interaction was identified to be attractive in the bulk and repulsive in
the interface regions at room temperature [20], which aligns well with our observations here.
In addition, Nb is more inclined to segregate to interfaces compared to W, which agrees with
most available studies on the segregation behavior in NbMoTaW [4, 5, 70]. The broad spec-
tra observed for ternaries and quaternaries also suggest that there are many more site-specific
energy states that solute atoms can occupy, complicating the prediction of segregation behavi-
ors. To translate these insights gained from the segregation energy spectra, the preprocessing
module is utilized to prepare the data in a format amenable to ML model training.

The ANN in the M1 module can now be employed where the true segregation energy dis-
tributions are used as targets, in accordance with the pipeline shown in figure 3(b). The pro-
ficiency of the model is demonstrated in figure 5, which compares the predicted segregation
energies with the true values for the validation dataset. The model, trained on the chemical
interactions depicted in figure 4, has its predictions evaluated across different elemental inter-
actions. When all interactions are considered (figure 5(a)), the model’s predictions correspond
closely to the true segregation energies, yielding aMSE of 0.01. AlthoughMAE is not included
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Figure 4. Site availability data at absolute zero. Spectra of segregation energies corres-
ponding to (a) binary (A as single element, e.g. Mo inMo-Ta), (b) ternary (A comprising
of two elements, e.g. Nb0.5Mo0.5 in NbMo-W), and (c) quaternary (A comprising of three
elements, e.g. Nb0.33Ta0.33W0.34 in NbTaW-Mo) interactions, and B (e.g. Ta in Mo-Ta,
MoW-Ta, or NbMoW-Ta) is always a solute of a single element. The interface sites cor-
responding to negative and positive segregation energies are denoted as segregation and
anti-segregation sites, respectively, demonstrating the variable segregation tendencies
across different base configurations and solute combinations. The red rectangles guide
the eye for the example system described in text. (d) The effect of Mo-Ta B2 clustering
is observed to be more pronounced in the bulk regions than the interface regions for the
MoTa base material.

in the training, it is observed as an additional metric that is physically easier to understand,
with the model achieving a MAE of 0.07 eV. Given that the entire distribution of segregation
energies spans∼1 eV, a MAE of 0.07 eV indicates a high level of precision in the model’s pre-
dictions. This performance is also illustrated in figure 5(a) by observing that the error margin
is narrower than the bin width of the histogram that represents the distribution of segregation
energies. The model exhibits even better performance when it is limited to quaternary interac-
tions (figure 5(b)), yielding an MSE of approximately 10−4 and achieving segregation energy
predictions with a MAE of 0.04 eV. The MSE for this case is observed to be within the limits
of error resolution maintained during training, indicating a highly precise predictive capab-
ility. The enhanced performance in the case of quaternary interactions could be attributed to
the reduced complexity and more defined chemical interactions compared to more complex
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Figure 5. Accuracy of neural network predictions for segregation energies. Comparison
of the true segregation energies (calculated in module A2) with the predicted segrega-
tion energies for (a) all interactions, (b) only quaternary interactions, and (c) specific
quaternary interactions with different solute atoms, confirming consistent high accur-
acy throughout. The mean absolute error (MAE) and mean squared error (MSE) values
are shown on the upper left-hand side of each plot.

systems. Finally, figure 5(c) further displays the model’s consistent performance across differ-
ent specific solutes within the quaternary system, maintaining high accuracy throughout. The
additional spread in the segregation energy predictions in figure 5(a) primarily originates from
binary and ternary interactions, as detailed in supplementary note 5.

3.2. CCEs

With the inclusion of solute-solute interactions and thermal effects, the segregation landscape
obtained in the previous section for zero temperature is no longer adequate for capturing the
segregation behavior. To remedy this, the proposed pipeline in figure 3(c) is employed, which
includesMC/MD simulations at 5 at.% solute-content increments, followed by the state match-
ing procedure. Figure 6(a) provides an example of the state matching process for a given base
(Nb0.5Mo0.5), where base atoms are randomly replaced with Ta to achieve the desired composi-
tion of Nb0.35Mo0.35Ta0.3. Following the MC/MD procedure, instances of negative segregation
are revealed, where solute atoms in favorable interfacial sites are replaced by base atoms. In
other words, not all energetically favorable sites are occupied due to the CCEs; some may
instead favor anti-segregation sites, leaving these interface sites occupied by host atoms. One
example of this behavior can be seen in figure 6(a), where the same interface site is markedwith
a red circle before and after equilibration. This site was occupied by a solute atom after equilib-
ration, even though it had a positive segregation energy. This behavior becomes more common
with increased solute concentration due to exhaustion of energetically favorable interface sites.
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Figure 6. Visualization of solute distribution and segregation in chemically complex
environments. (a) Illustration for a sample undecorated NbMo base demonstrating the
state matching process after Ta substitution and subsequent equilibration via MC/MD
simulations, revealing solute atom distribution pre- and post-state matching. Gray
regions correspond to the interfaces, while Nb, Mo, and Ta atoms are represented as
pink, blue, and yellow atoms, respectively. The DOS at room temperature for a NbMo
base with Ta as the solute, showing site occupancies at 10 at.% solute concentration
increments starting from (b) 10 at.%, and (c) 5 at.%, and the tendency for negative
segregation. The distributions in (c) are shown as three separate plots to mitigate visual
overlap and improve interpretability.

The room temperature simulations mitigate temperature-induced structural transitions, such
as interfacial disordering [20], although reaching this equilibrium for multielement systems is
challenging due to their slow kinetics [3]. Figure 6(b) shows the site occupancies for the same
ternary system at room temperature, with solute concentrations adjusted in 10 at.% increments
starting from 10 at.% concentration, and includes the corresponding site availability plot for
reference. Figure 6(c) shows the solute concentrations adjusted in 10 at.% increments start-
ing from 5 at.% concentration in three separate plots for more discernible visualization of each
distribution’s characteristics. Plots corresponding to additional binary, ternary, and quaternary
interactions can be found in supplementary note 6.

Consistent with prior literature, binary systems exhibit a distinct pattern of solute beha-
vior. Initially, the distribution is narrow and focused towards the left, indicating the occupancy
of energetically favorable (negative energy) segregation sites [22]. However, with increasing
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Figure 7. Classification model performance and prediction accuracy for varied solute
concentration. (a) The test accuracy variation with increasing solute concentrations for
binary, ternary, quaternary, and all interaction models. The model retains high accur-
acy up to the equiatomic concentration. (b) The confusion matrix for the all-interaction
model, emphasizing the model’s efficacy in predicting negative segregation and segreg-
ation states at interface sites.

solute concentration, this distribution broadens and shifts to include some higher-energy (pos-
itive energy, anti-segregation) sites [66]. In assessing the MC/MD model’s ability to predict
segregation behaviors across varying solute concentrations, a key observation is made in the
behavior of the DOS distributions. For ternary and quaternary systems, as the solute concen-
tration increases, the DOS distribution retains its broad character, contrary to the expectation
of a narrowing trend [66]. This broad, consistent shape persists even as the solute content rises.
This difference in behavior highlights a complex segregation dynamic in CCEs as compared to
simpler binary systems. For example, in the ternary NbMo-Ta system illustrated in figure 6(a)
there is a broad energy distribution from the outset. This suggests that the presence of Nb,
which is the strongest segregating species in any system containing it, restricts Ta’s ability to
occupy energetically favorable sites, thus maintaining a wide range of energy states even at
low solute concentrations.

To better understand the effect of increased solute concentration on the predictive accuracy
of the model, separate models were trained for different chemical interactions and varying
solute concentrations. Figure 7(a) illustrates the variation in test dataset accuracies, indicative
of the model’s efficacy in predicting MC/MD states across varying solute concentrations. Test
accuracies are presented for models trained exclusively on binary, ternary, quaternary, and all
interactions. Each concentration in figure 7(a) encompasses all lower concentrations within
the training set; hence, a model trained for a 20 at.% solute composition is also trained on
datasets representing 5 at.%, 10 at.%, and 15 at.% solute compositions. While the focus of
the work is on CCEs, it is notable that simpler segregation behavior such as those of binary
alloys can also come from this model. Notably, the model trained solely on binary interac-
tions shows exceptional performance at lower solute concentrations, achieving an accuracy of
approximately 96% in the test dataset.

The model trained on all interactions, which can predict the DOSs in CCEs, demonstrates a
robust accuracy rate, remaining around 90% for the test dataset for solute concentrations up to
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the equiatomic concentration. This indicates that the DOSs of any ternary or higher CCA with
solute content ranging from zero to near equiatomic concentrations can be predicted with a
high level of accuracy at room temperature. For the binary system (figure 7(a)), such configur-
ations do not have physical meaning and the graph terminates at 50 at.% due to the base-solute
interchangeability at higher concentrations. This same symmetry does not exist for ternaries
and quaternaries, as the multitude of A-B pair combinations blurs the distinction between base
and solute beyond equiatomic levels, resulting in an equivalent elemental combination but with
a non-equiatomic base. Beyond this, the uneven distribution of solute atoms can cause signific-
ant lattice distortions due to size mismatches and differing electrochemical properties [71–74].
Such distortions may lead to the emergence of new phases that were not accounted for in the
initial model formulations [4, 75, 76], reducing the models’ predictive capability. Moreover,
the emergence of structural defects, such as vacancies and interstitials, can further complicate
the material’s behavior by acting as scattering centers and altering its intrinsic properties [77].
These combined factors result in deviations from the predictions of our model.

To provide deeper insight into the prediction dynamics, a confusion matrix for the test data-
set is constructed for the all-interaction model up to the equiatomic concentration, as shown
in figure 7(b). This matrix details the outcomes for the binary classification of MC/MD states,
revealing a substantial distinction in the model’s ability to accurately identify negative segreg-
ation versus segregation states. The matrix shows that 64 230 out of 66 088 instances are
correctly predicted as negative segregation (state ‘0’), corresponding to a ∼97% accuracy.
In contrast, 4637 instances are accurately identified as segregation (state ‘1’) from a total of
10 248, yielding∼45% accuracy. The high true negative rate indicates that the model is highly
effective at correctly identifying instances where negative segregation occurs, suggesting that
the model is well-tuned to recognize stable configurations where solutes remain distributed
within the bulk matrix. However, the true positive rate is markedly lower. True positives in
this context refer to the model’s ability to accurately predict when a solute atom will segregate
to an interface site. The relatively low true positive rate indicates that the model is less adept at
predicting when solute atoms preferentially occupy interface sites, which could lead to under-
estimating the alloy’s propensity for segregation-related phenomena such as embrittlement or
enhanced chemical reactivity at the interfaces.

An important factor in this context is the impact ofMC/MD parameters and sampling on the
identification of negative segregation and segregation states, which could influence atom track-
ing due to thermal and temporal fluctuations, potentially affecting the identification of grain
structure and subsequent segregation states. Such influence is complicated by the energetic
near-degeneracy of many chemical environments in CCAs [71]. As an example, Mo interfa-
cial atomic fluctuations in a NbTaW base with Mo solute (30%) were measured at 1.76% over
the last 200 timesteps of a 1000 timestep MC/MD run. This fluctuation range highlights the
susceptibility to variations. Additionally, the adaptive common neighbor analysis method’s
vulnerability to thermal fluctuations needs to be noted, which could result in under- or over-
identification of segregation states. Given the energy-driven nature of the simulations, it is
noted that final configurations should stabilize similarly; however, extending the simulations
or optimizing the number of configurations sampled in MC/MD are proposed strategies to
address these potential discrepancies.

The imbalance in the dataset, with a much higher count of true negatives compared to true
positives, indicates that negative segregation is more prevalent than segregation in the test
dataset. This skew could be attributed to solute-solute interactions [66] as well as to the high-
solubility limits of CCAs [2]. Addressing the imbalance in the dataset by incorporating more
instances of segregation, which involves changing the bulk-to-interface ratio, or changing the
model size, and refining the features used to represent the atomic environments to mitigate its
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conservative bias are potential strategies for future improvement of ML models of the type
introduced here. The false negative rate of 7.35% implies that the model occasionally misses
instances of segregation, meaning that the model might fail to capture some interactions lead-
ing to segregation at the interface. On the other hand, the false positive rate of 2.43% suggests
that the model sometimes incorrectly predicts segregation where it does not occur, which may
reflect an inherent bias in the model due to the imbalanced nature of segregation compared to
negative segregation in this CCA. Overall, the higher rate of false negatives compared to false
positives suggests that the model is more conservative in predicting segregation. This tendency
is exacerbated with increased solute concentration, indicating that predicting the segregation
behavior gets more challenging as the local atomic environments becomemore complex due to
anti-segregation sites starting to fill up. Nevertheless, these results highlight the model’s strong
predictive power in identifying and categorizing interfacial segregation behavior in CCEs.

3.3. Predicting negative segregation behavior

The computational overhead of atomistic simulations performed for obtaining the negative
segregation behavior in CCEs is significant, even for this relatively small model. For example,
the atomistic simulations in modules A1-A3 require around 72 d of CPU time using 64 cores.
In contrast, using 12 cores, M1 predictions only take about 2 min while M2 predictions take
less than a second. Although the number of cores does not scale linearly with simulation time,
this roughly means that simulating a new composition using the prediction pipeline shown in
figure 2(d) instead of atomistic simulations will take minutes instead of months in CPU time.

The approach described here employs the pre-trained M1 model to make predictions of site
availabilities, which were shown to be highly accurate, and passes these predictions to the M2
model, along with the vectorized local atomic environments. Therefore, onceM1 andM2mod-
els are trained for a material system, this pipeline can provide very fast predictions of the DOSs
in CCEs. Such an approach is not only orders of magnitude faster than conventional methods
but also maintains high accuracy. As depicted in the confusion matrix shown in figure 8(a),
the model, which utilizes predicted site availabilities, exhibits an 87% accuracy for the test
dataset for solute concentrations up to the equiatomic concentration. This represents only a
3% decrease in accuracy compared to running more computationally costly atomistic simula-
tions. Moreover, the confusion matrix suggests that while the inherent bias towards negative
segregation states is preserved in this approach, the relative importance of the false negative
rates is amplified.

Additionally, the interpretable nature of the XGBoost algorithm, unlike ANN methods,
facilitates deeper insights [68]. This is exemplified by the ability to generate estimates of fea-
ture importance plots directly from the model, as shown in figure 8(b). These plots provide
valuable assessments of the importance of local atomic environments relative to thermody-
namic considerations in determining segregation behavior in CCEs. Figure 8(b) shows the F-
score, which is a statistical measure combining both precision and recall evaluating the accur-
acy of a model’s predictions, of individual features used in the training process. According
to this plot, segregation energies are the most important feature, indicating that they have
the greatest influence on the model’s ability to predict segregation behavior accurately in the
given dataset. The other features include dimensionality-reduced SOAP vector representations.
These vectors represent local atomic environments using a mathematical framework based on
spherical harmonics, which, while effective for ML applications, do not provide a direct phys-
ical mapping of the atomic arrangements [63].
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Figure 8. Performance metrics and feature importance for segregation prediction. (a)
The confusion matrix for a model using predicted site availabilities, with an 87% accur-
acy rate for solute concentrations up to the equiatomic concentration. The matrix high-
lights the model’s inherent bias towards negative segregation. (b) The F-scores for fea-
tures used in XGBoost training, emphasizing segregation energies as the most influential
feature for accurate predictions in CCAs.

4. Summary and conclusions

The ML framework described here, aimed at predicting interfacial segregation behavior in
CCEs, resonates with emerging trends in materials science, where accurate predictions often
hinge on the careful selection and understanding of features. For instance, selecting physic-
ally meaningful features is especially important when there is limited data availability [37].
Similarly, the advancements in CCA research demonstrate the impact of comprehensive fea-
ture engineering in enhancing prediction accuracy of phases with small datasets [35]. Finally,
the use of ANNs in the study of grain boundary property diagrams illustrates the potential of
ML to simplify and effectively analyze complex, multidimensional problems, similar to the
challenges in modeling CCEs [33]. These studies collectively reinforce the approach taken in
our study, where feature importance not only guides the prediction accuracy but also deepens
our understanding of the interfacial segregation phenomena in CCEs. Moreover, the scope of
this pipeline extends beyond its current application, as it can be adapted for a variety ofmaterial
systems and modified to account for segregation behavior across different temperature ranges.

In summary, the robust and adaptable tool developed in this study offers a means for
researchers to conduct high-throughput investigations into co-segregation behavior in CCEs,
eliminating the need for expensive atomistic simulations. It thus serves as a valuable asset
in elucidating the complex chemical ordering and clustering behavior that is characteristic of
CCAs.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

19



Modelling Simul. Mater. Sci. Eng. 32 (2024) 065011 D Aksoy et al

Code Availability

The underlying code for this study will be made available to researchers on reasonable request
from the corresponding author.

Acknowledgments

This research was primarily supported by the National Science FoundationMaterials Research
Science and Engineering Center program through the UC Irvine Center for Complex and
Active Materials (DMR-2011967). In the preparation of this article, a large language model
(ChatGPT 25 September 2023) was employed for tasks such as proofreading, code optimiza-
tion, and code commentary through careful prompt engineering. While the tool aided in these
areas, it was not involved in the conceptualization of the work. All outputs from ChatGPT
were rigorously examined for factual accuracy.

Author contributions

D A: Formal Analysis; Atomistic Simulations; Software Development; Methodology;
Investigation; Writing—original draft; Writing—review & editing. J L: Conceptualization;
Writing—review & editing. P C: Conceptualization; Writing—review & editing. T J R:
Conceptualization; Supervision; Funding acquisition; Project Administration; Writing—
review & editing.

Conflict of interest

All authors declare no financial or non-financial competing interests.

ORCID iDs

Doruk Aksoy https://orcid.org/0000-0002-3351-3369
Timothy J Rupert https://orcid.org/0000-0002-7378-7807

References

[1] Tunes M A and Vishnyakov V M 2019 Mater. Des. 170 107692
[2] Senkov O N, Wilks G B, Miracle D B, Chuang C P and Liaw P K 2010 Intermetallics 18 1758–65
[3] Cao P 2021 Acc. Mater. Res. 2 71–74
[4] Kostiuchenko T, Körmann F, Neugebauer J and Shapeev A 2019 npj Comput. Mater. 5 55
[5] Byggmästar J, Nordlund K and Djurabekova F 2021 Phys. Rev. B 104 104101
[6] Kozak R, Sologubenko A and Steurer W 2015 Z. Kristallogr. 230 55–68
[7] Senkov O N, Wilks G B, Scott J M and Miracle D B 2011 Intermetallics 19 698–706
[8] Chatain D and Wynblatt P 2021 Comput. Mater. Sci. 187 110101
[9] Han Z D, Luan HW, Liu X, Chen N, Li X Y, Shao Y and Yao K F 2018Mater. Sci. Eng. 712 380–5

[10] Feng X B, Zhang J Y, Wang Y Q, Hou Z Q, Wu K, Liu G and Sun J 2017 Int. J. Plast. 95 264–77
[11] Farkas D 2020 J. Mater. Sci. 55 9173–83
[12] Chen S, Aitken Z H, Pattamatta S, Wu Z, Yu Z G, Srolovitz D J, Liaw P K and Zhang Y-W 2021

Nat. Commun. 12 4953
[13] He Q F et al 2021 Acta Mater. 216 117140
[14] Garg P, Pan Z, Turlo V and Rupert T J 2021 Acta Mater. 218 117213
[15] Aksoy D, Dingreville R and Spearot D E 2021 Acta Mater. 205 116527

20

https://orcid.org/0000-0002-3351-3369
https://orcid.org/0000-0002-3351-3369
https://orcid.org/0000-0002-7378-7807
https://orcid.org/0000-0002-7378-7807
https://doi.org/10.1016/j.matdes.2019.107692
https://doi.org/10.1016/j.matdes.2019.107692
https://doi.org/10.1016/j.intermet.2010.05.014
https://doi.org/10.1016/j.intermet.2010.05.014
https://doi.org/10.1021/accountsmr.0c00102
https://doi.org/10.1021/accountsmr.0c00102
https://doi.org/10.1038/s41524-019-0195-y
https://doi.org/10.1038/s41524-019-0195-y
https://doi.org/10.1103/PhysRevB.104.104101
https://doi.org/10.1103/PhysRevB.104.104101
https://doi.org/10.1515/zkri-2014-1739
https://doi.org/10.1515/zkri-2014-1739
https://doi.org/10.1016/j.intermet.2011.01.004
https://doi.org/10.1016/j.intermet.2011.01.004
https://doi.org/10.1016/j.commatsci.2020.110101
https://doi.org/10.1016/j.commatsci.2020.110101
https://doi.org/10.1016/j.msea.2017.12.004
https://doi.org/10.1016/j.msea.2017.12.004
https://doi.org/10.1016/j.ijplas.2017.04.013
https://doi.org/10.1016/j.ijplas.2017.04.013
https://doi.org/10.1007/s10853-020-04387-y
https://doi.org/10.1007/s10853-020-04387-y
https://doi.org/10.1038/s41467-021-25264-5
https://doi.org/10.1038/s41467-021-25264-5
https://doi.org/10.1016/j.actamat.2021.117140
https://doi.org/10.1016/j.actamat.2021.117140
https://doi.org/10.1016/j.actamat.2021.117213
https://doi.org/10.1016/j.actamat.2021.117213
https://doi.org/10.1016/j.actamat.2020.116527
https://doi.org/10.1016/j.actamat.2020.116527


Modelling Simul. Mater. Sci. Eng. 32 (2024) 065011 D Aksoy et al

[16] Aksoy D, Dingreville R and Spearot D E 2019 Modelling Simul. Mater. Sci. Eng. 27 085016
[17] Scheiber D and Romaner L 2021 Acta Mater. 221 117393
[18] Dingreville R, Aksoy D and Spearot D E 2017 Sci. Rep. 7 8332
[19] McCarthy M J, Zheng H, Apelian D, Bowman W J, Hahn H, Luo J, Ong S P, Pan X and Rupert T J

2021 Phys. Rev. Mater. 5 113601
[20] Aksoy D, McCarthy M J, Geiger I, Apelian D, Hahn H, Lavernia E J, Luo J, Xin H and Rupert T J

2022 J. Appl. Phys. 132 235302
[21] Körmann F, Ruban A V and Sluiter M H F 2017 Mater. Res. Lett. 5 35–40
[22] Wagih M and Schuh C A 2019 Acta Mater. 181 228–37
[23] Lee S Y, Byeon S, Kim H S, Jin H and Lee S 2021 Mater. Des. 197 109260
[24] Deffrennes G, Terayama K, Abe T and Tamura R 2022 Mater. Des. 215 110497
[25] Krishna Y V, Jaiswal U K and R R M 2021 Scr. Mater. 197 113804
[26] Huang W, Martin P and Zhuang H L 2019 Acta Mater. 169 225–36
[27] Lee K, Ayyasamy M V, Delsa P, Hartnett T Q and Balachandran P V 2022 npj Comput. Mater. 8 25
[28] Han Q, Lu Z, Zhao S, Su Y and Cui H 2022 Comput. Mater. Sci 215 111774
[29] Zhang Y, Wen C, Wang C, Antonov S, Xue D, Bai Y and Su Y 2020 Acta Mater. 185 528–39
[30] Dai M, Demirel M F, Liang Y and Hu J-M 2021 npj Comput. Mater. 7 103
[31] Hou S, Sun M, Bai M, Lin D, Li Y and Liu W 2022 Acta Mater. 228 117742
[32] Hu X, Wang J, Wang Y, Li J, Wang Z, Dang Y and Gu Y 2018 Comput. Mater. Sci 155 331–9
[33] Hu C, Zuo Y, Chen C, Ping Ong S and Luo J 2020 Mater. Today 38 49–57
[34] Chen C and Ong S P 2021 npj Comput. Mater. 7 173
[35] Dai D, Xu T, Wei X, Ding G, Xu Y, Zhang J and Zhang H 2020 Comput. Mater. Sci 175 109618
[36] Guziewski M, Montes De Oca Zapiain D, Dingreville R and Coleman S P 2021 ACS Appl. Mater.

Interfaces 13 3311–24
[37] De Breuck P-P, Hautier G and Rignanese G-M 2021 npj Comput. Mater. 7 83
[38] Pei Z, Yin J, Hawk J A, Alman D E and Gao M C 2020 npj Comput. Mater. 6 50
[39] Zhou Z, Zhou Y, He Q, Ding Z, Li F and Yang Y 2019 npj Comput. Mater. 5 128
[40] Yang S, Zhou N, Zheng H, Ong S P and Luo J 2018 Phys. Rev. Lett. 120 085702
[41] Frolov T, Setyawan W, Kurtz R J, Marian J, Oganov A R, Rudd R E and Zhu Q 2018 Nanoscale

10 8253–68
[42] Han J, Vitek V and Srolovitz D J 2016 Acta Mater. 104 259–73
[43] Reinhart W F 2021 Comput. Mater. Sci. 196 110511
[44] Huber L, Hadian R, Grabowski B and Neugebauer J 2018 npj Comput. Mater. 4 64
[45] Wagih M, Larsen P M and Schuh C A 2020 Nat. Commun. 11 6376
[46] Dai W, Wang H, Guan Q, Li D, Peng Y and Tomé C N 2021 Acta Mater. 214 117006
[47] Liu X, Zhang J and Pei Z 2023 Prog. Mater. Sci. 131 101018
[48] Ye W, Zheng H, Chen C and Ong S P 2022 Scr. Mater. 218 114803
[49] McLean D and Maradudin A 1958 Phys. Today 11 35–36
[50] White C L and Coghlan W A 1977 Metall. Trans. A 8 1403–12
[51] Hirel P 2015 Comput. Phys. Commun. 197 212–9
[52] Tuchinda N and Schuh C A 2022 Acta Mater. 226 117614
[53] Thompson A P et al 2022 Comput. Phys. Commun. 271 108171
[54] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[55] Caswell T A et al 2021 matplotlib/matplotlib: REL: v3.5.1 (https://doi.org/10.5281/ZENODO.

5773480)
[56] Waskom M L 2021 J. Open Source Softw. 6 3021
[57] Yin S, Zuo Y, Abu-Odeh A, Zheng H, Li X-G, Ding J, Ong S P, Asta M and Ritchie R O 2021 Nat.

Commun. 12 4873
[58] Zuo Y et al 2020 J. Phys. Chem. A 124 731–45
[59] Yin S, Ding J, Asta M and Ritchie R O 2020 npj Comput. Mater. 6 1–11
[60] Shapeev A V 2016 Multiscale Model Simul. 14 1153–73
[61] Behler J 2011 J. Chem. Phys. 134 074106
[62] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[63] Rosenbrock C W, Homer E R, Csányi G and Hart G L W 2017 npj Comput. Mater. 3 29
[64] Csanyi G, Winfield S, Kermode J, Payne M C, Comisso A, De Vita A and Bernstein N 2007

Expressive programming for computational physics in Fortran 950+ Newsl. Comput. Phys.
Group 1–24

[65] Kermode J R 2020 J. Phys.: Condens. Matter 32 305901

21

https://doi.org/10.1088/1361-651X/ab4c48
https://doi.org/10.1088/1361-651X/ab4c48
https://doi.org/10.1016/j.actamat.2021.117393
https://doi.org/10.1016/j.actamat.2021.117393
https://doi.org/10.1038/s41598-017-08637-z
https://doi.org/10.1038/s41598-017-08637-z
https://doi.org/10.1103/PhysRevMaterials.5.113601
https://doi.org/10.1103/PhysRevMaterials.5.113601
https://doi.org/10.1063/5.0122502
https://doi.org/10.1063/5.0122502
https://doi.org/10.1080/21663831.2016.1198837
https://doi.org/10.1080/21663831.2016.1198837
https://doi.org/10.1016/j.actamat.2019.09.034
https://doi.org/10.1016/j.actamat.2019.09.034
https://doi.org/10.1016/j.matdes.2020.109260
https://doi.org/10.1016/j.matdes.2020.109260
https://doi.org/10.1016/j.matdes.2022.110497
https://doi.org/10.1016/j.matdes.2022.110497
https://doi.org/10.1016/j.scriptamat.2021.113804
https://doi.org/10.1016/j.scriptamat.2021.113804
https://doi.org/10.1016/j.actamat.2019.03.012
https://doi.org/10.1016/j.actamat.2019.03.012
https://doi.org/10.1038/s41524-022-00704-y
https://doi.org/10.1038/s41524-022-00704-y
https://doi.org/10.1016/j.commatsci.2022.111774
https://doi.org/10.1016/j.commatsci.2022.111774
https://doi.org/10.1016/j.actamat.2019.11.067
https://doi.org/10.1016/j.actamat.2019.11.067
https://doi.org/10.1038/s41524-021-00574-w
https://doi.org/10.1038/s41524-021-00574-w
https://doi.org/10.1016/j.actamat.2022.117742
https://doi.org/10.1016/j.actamat.2022.117742
https://doi.org/10.1016/j.commatsci.2018.09.003
https://doi.org/10.1016/j.commatsci.2018.09.003
https://doi.org/10.1016/j.mattod.2020.03.004
https://doi.org/10.1016/j.mattod.2020.03.004
https://doi.org/10.1038/s41524-021-00639-w
https://doi.org/10.1038/s41524-021-00639-w
https://doi.org/10.1016/j.commatsci.2020.109618
https://doi.org/10.1016/j.commatsci.2020.109618
https://doi.org/10.1021/acsami.0c15980
https://doi.org/10.1021/acsami.0c15980
https://doi.org/10.1038/s41524-021-00552-2
https://doi.org/10.1038/s41524-021-00552-2
https://doi.org/10.1038/s41524-020-0308-7
https://doi.org/10.1038/s41524-020-0308-7
https://doi.org/10.1038/s41524-019-0265-1
https://doi.org/10.1038/s41524-019-0265-1
https://doi.org/10.1103/PhysRevLett.120.085702
https://doi.org/10.1103/PhysRevLett.120.085702
https://doi.org/10.1039/C8NR00271A
https://doi.org/10.1039/C8NR00271A
https://doi.org/10.1016/j.actamat.2015.11.035
https://doi.org/10.1016/j.actamat.2015.11.035
https://doi.org/10.1016/j.commatsci.2021.110511
https://doi.org/10.1016/j.commatsci.2021.110511
https://doi.org/10.1038/s41524-018-0122-7
https://doi.org/10.1038/s41524-018-0122-7
https://doi.org/10.1038/s41467-020-20083-6
https://doi.org/10.1038/s41467-020-20083-6
https://doi.org/10.1016/j.actamat.2021.117006
https://doi.org/10.1016/j.actamat.2021.117006
https://doi.org/10.1016/j.pmatsci.2022.101018
https://doi.org/10.1016/j.pmatsci.2022.101018
https://doi.org/10.1016/j.scriptamat.2022.114803
https://doi.org/10.1016/j.scriptamat.2022.114803
https://doi.org/10.1063/1.3062658
https://doi.org/10.1063/1.3062658
https://doi.org/10.1007/BF02642853
https://doi.org/10.1007/BF02642853
https://doi.org/10.1016/j.cpc.2015.07.012
https://doi.org/10.1016/j.cpc.2015.07.012
https://doi.org/10.1016/j.actamat.2021.117614
https://doi.org/10.1016/j.actamat.2021.117614
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.5281/ZENODO.5773480
https://doi.org/10.5281/ZENODO.5773480
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.1038/s41467-021-25134-0
https://doi.org/10.1038/s41467-021-25134-0
https://doi.org/10.1021/acs.jpca.9b08723
https://doi.org/10.1021/acs.jpca.9b08723
https://doi.org/10.1038/s41524-019-0267-z
https://doi.org/10.1038/s41524-019-0267-z
https://doi.org/10.1137/15M1054183
https://doi.org/10.1137/15M1054183
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1038/s41524-017-0027-x
https://doi.org/10.1038/s41524-017-0027-x
https://doi.org/10.1088/1361-648X/ab82d2
https://doi.org/10.1088/1361-648X/ab82d2


Modelling Simul. Mater. Sci. Eng. 32 (2024) 065011 D Aksoy et al

[66] Wagih M and Schuh C A 2021 Acta Mater. 217 117177
[67] Botchkarev A 2019 Interdiscip. J. Inf. Knowl. Manage. 14 045–076
[68] Chen T and Guestrin C 2016 Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining pp 785–94
[69] Snoek J, Larochelle H and Adams R P 2012 Practical bayesian optimization of machine learning

algorithms Advances in Neural Information Processing Systems 25 (NIPS 2012) (https://doi.org/
10.48550/arXiv.1206.2944)

[70] Liu X, Zhang J, Yin J, Bi S, Eisenbach M and Wang Y 2021 Comput. Mater. Sci 187 110135
[71] Owen L R, Jones N G and Mater J 2018 J. Mater. Res 33 2954–69
[72] Miracle D B and Senkov O N 2017 Acta Mater. 122 448–511
[73] Wang Z, Qiu W, Yang Y and Liu C T 2015 Intermetallics 64 63–69
[74] Blokker E, Sun X, Poater J, Van Der Schuur J M, Hamlin T A and Bickelhaupt FM 2021 Chemistry

A 27 15616–22
[75] Zhou N, Hu T, Huang J and Luo J 2016 Scr. Mater. 124 160–3
[76] Körmann F and Sluiter M 2016 Entropy 18 403
[77] Aksoy D, Cao P, Trelewicz J R, Wharry J P and Rupert T J 2024 JOM 76 2870–83

22

https://doi.org/10.1016/j.actamat.2021.117177
https://doi.org/10.1016/j.actamat.2021.117177
https://doi.org/10.28945/4184
https://doi.org/10.28945/4184
https://doi.org/10.48550/arXiv.1206.2944
https://doi.org/10.48550/arXiv.1206.2944
https://doi.org/10.1016/j.commatsci.2020.110135
https://doi.org/10.1016/j.commatsci.2020.110135
https://doi.org/10.1557/jmr.2018.322
https://doi.org/10.1557/jmr.2018.322
https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1016/j.intermet.2015.04.014
https://doi.org/10.1016/j.intermet.2015.04.014
https://doi.org/10.1002/chem.202103544
https://doi.org/10.1002/chem.202103544
https://doi.org/10.1016/j.scriptamat.2016.07.014
https://doi.org/10.1016/j.scriptamat.2016.07.014
https://doi.org/10.3390/e18080403
https://doi.org/10.3390/e18080403
https://doi.org/10.1007/s11837-024-06382-z
https://doi.org/10.1007/s11837-024-06382-z

	A machine learning framework for the prediction of grain boundary segregation in chemically complex environments
	1. Introduction
	2. Methods
	2.1. Thermodynamic framework
	2.2. Sample preparation and bases
	2.3. Site availabilities at absolute zero
	2.4. CCEs
	2.5. Preprocessing
	2.6. Predictive modeling with ML
	2.7. Pipelines tailored for various applications

	3. Results and discussions
	3.1. Site availabilities at absolute zero
	3.2. CCEs
	3.3. Predicting negative segregation behavior

	4. Summary and conclusions
	References




