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Atomistic simulations have become a powerful tool in materials research due
to the extremely fine spatial and temporal resolution provided by such tech-
niques. To understand the fundamental principles that govern material
behavior at the atomic scale and directly connect to experimental works, it is
necessary to quantify the microstructure of materials simulated with atom-
istics. Specifically, quantitative tools for identifying crystallites, their crys-
tallographic orientation, and overall sample texture do not currently exist.
Here, we develop a post-processing algorithm capable of characterizing such
features, while also documenting their evolution during a simulation. In
addition, the data is presented in a way that parallels the visualization
methods used in traditional experimental techniques. The utility of this
algorithm is illustrated by analyzing several types of simulation cells that are
commonly found in the atomistic modeling literature but could also be applied
to a variety of other atomistic studies that require precise identification and
tracking of microstructure.

INTRODUCTION

An important initiative within the materials sci-
ence and engineering community has been inte-
grated computational materials engineering
(ICME), which aims to accelerate materials devel-
opment and manufacturing processes by integrating
computational materials science tools with experi-
mental data and materials theory.1–3 Because
innovations in materials design and processing are
often the driving force behind the development of
advanced and disruptive technologies, rapid ad-
vanced material discoveries are essential for con-
tinued innovation. A key tenant of ICME is the
creation of large databases of materials information,
such as processing parameters, microstructure, and
resultant properties, through joint computation and
experimentation from which correlations can be
drawn and new materials theory created. ICME
relies on microstructure-mediated design, meaning
quantitative characterization of three-dimensional
(3-D) microstructures is of utmost importance.4

The acquisition of large, 3-D data sets of micro-
structural features is challenging, although
impressive progress has recently been made in the

experimental community. Several advances have
come from uniting quantitative optical and scan-
ning electron microscopy (SEM) with serial sec-
tioning, allowing 3-D microstructures to be
assembled by combining two-dimensional (2-D)
scans from multiple oblique sections through a
sample. Initial efforts in this field relied on manual
material removal, with techniques such as milling
or polishing,5 or focused ion-beam (FIB) microma-
chining.6 While manual sectioning is an excellent
choice for fast material removal, FIB machining is
very accurate and can produce sectioning with
nanometer spacing. Echlin et al.7 have recently
bridged the gap between manual and FIB-based
sectioning by adding a femtosecond laser to a FIB/
SEM system, creating a ‘‘TriBeam’’ system that can
access a wide range of material removal rates.8 In
addition to serial sectioning techniques, electron
tomography9 and atom-probe tomography10 have
become increasingly popular for 3-D quantification
of microstructure. Both techniques can provide
structural information with subnanometer resolu-
tion, but only limited volumes of material can be
characterized. Unfortunately, there are inherent
limitations to all available experimental methods.

JOM, Vol. 66, No. 3, 2014

DOI: 10.1007/s11837-013-0831-9
� 2013 The Minerals, Metals & Materials Society

(Published online January 1, 2014) 417



They are often very expensive, in terms of both the
equipment cost and the time needed to tabulate 3-D
data sets, and usually they are destructive to the
sample being analyzed. The first limitation hinders
the accessibility to the broader materials commu-
nity, whereas the latter means that one cannot
track microstructural features as stress, tempera-
ture, or other driving forces for structural evolution
are applied.

Atomistic simulations, such as molecular
dynamics (MD) and Monte Carlo (MC) methods, can
complement the available experimental techniques
by providing a level of spatial and temporal resolu-
tion that experiments cannot achieve. Atomistic
simulations also track atoms as the system evolves,
making the documentation of system evolution a
routine procedure. Even though current computa-
tional power forces MD timescales to be short and
the spatial dimensions of MD and MC simulations
to be small, there have been many examples where
such methods have been successfully used to pro-
vide insight about material processing, microstruc-
tures, and properties.11 For example, Wang et al.12

used MD to examine key morphological and com-
positional aspects of vapor–liquid–solid (VLS)
growth of silicon nanowires Cheng and Ngan13

employed MD to study the sintering behavior of Cu
nanoparticles and found the process to be much
different than what has been observed for larger
particles. Other examples of structural evolution
documented with atomistic simulations include
precipitate formation,14 film deposition,15 mechani-
cally driven grain growth,16,17 phase transforma-
tions,18 and strain-induced amorphization,19

showing that atomistic modeling can be a powerful
tool for documenting the processing–structure
relations needed for ICME.

Unfortunately, the vast majority of characteriza-
tion in atomistic modeling consists of the calculation
of local properties of each atom, such as energy,
stress, or local lattice distortion, and qualitative
observations, such as the migration of a certain
grain boundary. The quantification of microstruc-
tural evolution through rigorous feature tracking is
less common. Luckily, several computational mate-
rials scientists have recently acknowledged this
limitation and started working to develop tools for
quantifying structure in atomistic simulations. For
example, Stukowski et al.20 have created a disloca-
tion extraction algorithm (DXA) that can identify
both lattice and grain boundary dislocations.21 In
addition, Xu and Li22 developed a technique for
identifying atoms that are part of grain boundaries,
triple junctions, and vertices, whereas Barrett
et al.23 and Tucker et al.24 developed metrics that
identified hexagonal basal plane vectors and mi-
crorotation vectors for all atoms, respectively. Some
authors have gone an alternative route by simulat-
ing scattering physics to characterize microstruc-
ture; Derlet et al.25 and Coleman et al.26 developed
techniques for producing virtual diffraction profiles

from atomistic data. In work that is closer to our end
goal of analyzing crystalline materials directly,
Tucker and Foiles27 recently developed a technique
for finding individual grains within a polycrystal-
line sample, allowing for quantitative measure-
ments of grain size.

Missing from the toolbox currently available to
researchers is an analysis technique that can iden-
tify and track crystallites, their crystallographic
orientation, and overall sample texture. In response
to this need in the community, we have developed
an original post-processing tool that identifies all
crystalline grains and precisely calculates grain
orientations with no a priori knowledge of the sim-
ulated microstructure. In addition, the algorithm
also defines a mapping between simulation time
steps, allowing for the analysis of individual grain
movement, rotation, or coalescence as time pro-
gresses. In this article, we explain the details of our
algorithm and provide several case studies showing
its utility for characterizing and visualizing micro-
structural features in atomistic simulations.

ANALYSIS METHODS

The grain tracking algorithm (GTA) presented in
this article consists of the following five principle
steps:

(1) Crystalline atoms in the simulation set are
identified by centrosymmetry parameter
(CSP),28 common neighbor analysis (CNA),29,30

or any other comparable measurement that can
identify defects in local crystalline structure
such as bond angle analysis31 or neighbor
distance analysis.32

(2) The local crystallographic orientation of each
atom in a crystalline environment is calculated
using the geometry of the material’s unit cell.

(3) Individual crystallites are identified by an iter-
ative process in which nearest neighbors must
have similar crystallographic orientations to be
included in the same grain.

(4) Grains are indexed and tracked over time using
the center of mass of each crystallite.

(5) The measured orientation of each grain and the
overall sample texture are visualized with pole
figures, inverse pole figures, and orientation
maps. We aim to recreate the familiarity of
experimental visualization methods and better
integrate atomistic data sets into ICME.

It is important to note that the GTA is largely a
generic algorithm that can be applied to any crys-
talline material regardless of the crystal structure.
In this article, we describe the algorithm’s imple-
mentation for face-centered cubic (fcc) crystals, al-
though only minor modifications to steps (2) and (5)
would be necessary to analyze other crystal struc-
tures. The algorithm is currently implemented as
MATLAB code, which is available from the authors
upon request.
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Atom Classification

The first step in our GTA method is to separate
atoms based on their local environment. Specifi-
cally, we classify atoms as grain interior, grain edge,
or noncrystalline. Many techniques for local struc-
tural analysis exist, and a detailed discussion of the
advantages of each method can be found in a recent
article from Stukowski.32 While any of these metrics
can be used with our algorithm, we focus in this
article on CSP and CNA as potential techniques for
defect identification due to their widespread usage
in the literature and because they are built into
common MD simulation packages such as the large-
scale atomic/molecular massively parallel simulator
(LAMMPS) code.33

A centrosymmetric lattice, such as fcc or body-
centered cubic (bcc), has pairs of equal and opposite
bonds between nearest neighbors. CSP measures
the deviation from this perfect centrosymmetry and
can be used to identify defects when a threshold
value associated with thermal vibrations is ex-
ceeded. One method for determining an appropriate
threshold for defect identification is the Gilvarry34

relation, which places an upper limit on the thermal
vibrations a crystal can experience before it melts
(�12% of the nearest-neighbor distance), but such a
distinction is not perfect and the CSP method
struggles with false positives in defect identification
at high temperatures. However, the CSP metric is
well suited for analyzing highly strained atomistic
systems, as it is not sensitive to homogeneous
elastic deformation. Alternatively, CNA analyzes
the topology of the bonds within a cutoff distance
around an atom and assigns a structural type (fcc,
bcc, hexagonal close packed [hcp], or unknown
structure are the distinctions that are commonly
used) to the atom in question. Therefore, any atom
with a structure different than that expected for the
material can be classified as a defect. For example,
when analyzing fcc Ni, all bcc, hcp, and unknown
atoms would be considered defects. CNA tends to be
less sensitive to thermal vibrations, but large elastic
strains can pull the nearest neighbors outside of the
cutoff distance for analysis. Hence, the CNA metric
is most useful when dealing with materials at high
temperatures but struggles with highly strained
systems.

Using either CSP or CNA in its current formula-
tion, the GTA first identifies defect atoms and labels
them noncrystalline. We then further sort the
remaining crystalline atoms by examining the
nearest neighbors. If all of an atom’s nearest
neighbors (12 in the case of fcc) are also in a crys-
talline environment, then the atom is labeled grain
interior. Alternatively, if one or more nearest
neighbor is noncrystalline, then the atom in ques-
tion is labeled grain edge. This distinction ends up
being important for identifying grains and avoiding
large errors in the calculated orientation of the
crystallites. Figure 1 shows a polycrystalline Al

atomistic sample, with atoms separated into grain
interior, grain edge, and noncrystalline.

Local Crystallographic Orientation

Once all atoms in grain interior environments
have been found, we calculate the local orientation
of each atom based on the unit cell of the material.
The process of determining the local orientation at
each atom is highlighted in Fig. 2a for an fcc
material. The nearest neighbors of an atom must be
found, and then an arbitrary vector is chosen in the
direction of one of these neighbors. For an fcc lattice,
there will be four other neighbors whose directional
vectors will lie approximately 60� from the original
arbitrary vector. These four new vectors will reside
in two separate {100} planes of the unit cell, with
each plane containing a pair of nearest neighbors
and a 100h i direction, which must be perpendicular
to its counterpart. The cross product of these two
100h i directions then gives the third 001h i direction.

Finally, we find the inverse of these three vectors as
well, giving all six 100h i axes of the unit cell. The
local orientation of the atom is now described fully
and can be stored. This calculation is repeated for
each grain interior atom, providing crystal orienta-
tion as a function of position within the atomistic
sample. It is important to note that any periodic
boundary conditions must be enforced before this
calculation to avoid errors in atoms near the
boundaries of the simulation cell. Our code takes
care of this requirement by adding virtual images of
the simulation cell when necessary.

Fig. 1. Nanocrystalline Al atomistic sample, with atoms separated
into grain interior (green), grain edge (blue), and noncrystalline
(white). CSP was used to find defective atoms, and the noncrystal-
line atoms are all grain boundary atoms because there is no stored
dislocation debris (a color version of this figure is available online).

Tracking Microstructure of Crystalline Materials: A Post-Processing Algorithm for Atomistic
Simulations

419



While the exact description provided above is un-
ique to an fcc lattice, only small changes are required
for other lattice structures. For example, if the equi-
librium crystal structure is bcc, then a similar
method for finding the local orientation can be
employed and is outlined in Fig. 2b. We start by cal-
culating the vectors connecting our atom of interest to
its eight nearest neighbors. Then, we can select two of
the nearest-neighbor vectors and their inverse vec-
tors that are 180� away, giving four vectors which lie
in a {110} plane. Next, we separate the pair of vectors
which are 109.47� apart from the other pair that lies
70.53� apart. Adding the vectors in each pair gives the
blue and orange axes shown in Fig. 2b, and the cross
product of these vectors gives the green axis. Because
our vector algebra has been done on a {110} plane up
until this point, we only need to rotate this new
orthogonal coordinate system by 45� about the orange
axis vector to find three 100h i directions and obtain
the center atom’s local crystallographic orientation.

Grain Identification

After orientations are calculated for every grain
interior atom, the GTA begins searching for and
identifying individual grains. To begin, a randomly
selected grain interior atom is picked and added to
the current grain of interest as the first atom. This
atom will temporarily be labeled as the reference
atom. The nearest neighbors are then reviewed one
by one and must meet certain criteria before being
added to the grain currently being indexed.

The GTA first checks to make sure that the atom
is also a grain interior atom. It is common for grains
to be artificially connected by one or two atoms that
are in a crystalline environment. Therefore, the

segregation of grain edge atoms from the grain
interior atoms which are deeper within the crys-
tallite ensures more accurate grain identification by
closing some of these artificial connections. Next,
the orientation of our reference atom is compared
with the orientations of its nearest neighbors, using
a user-defined orientation cutoff angle as our metric.
In its current formulation, the GTA calculates the
angles separating the 100h i directions associated
with the reference atom and the 100h i directions
associated with the nearest neighbor in question. If
all of these angles are less than the orientation
cutoff angle, the nearest neighbor atom is added to
the grain. We currently use an orientation cutoff of
only a few degrees, which will be discussed more
extensively in the Applications and Examples sec-
tion of the text. The chosen orientation cutoff angle
can be adjusted for a variety of reasons, with an
obvious example being the decision whether to
identify low-angle grain boundaries. A low-angle
grain boundary composed of an array of dislocations
would not appear as a continuous plane of non-
crystalline atoms and would therefore not be iden-
tified as a grain boundary if only CSP or CNA is
used. However, the GTA recognizes the change in
crystal orientation across such a boundary if the
orientation cutoff is low and allows the two grains to
be distinguished from one another. Because the
GTA stores all orientation information needed to
completely describe each atom’s local crystallo-
graphic environment, one could also choose to cal-
culate alternative metrics, such as misorientation
angle, to compare with the orientation cutoff angle.

After examining the nearest neighbors of the first
reference atom, the GTA then selects one of the
atoms that was just added to the grain as the new

Fig. 2. (a) A schematic of atoms in two stacked fcc unit cells, which illustrates the process of calculating the local crystallographic orientation of
an atom. The inverse of the three calculated 100h i directions must also be taken to find all six 100h i directions. (b) A similar schematic illustration
of the process used to find the orientation of atoms in bcc environments. Again, all 100h i directions are found and uses to store orientation
information (a color version of this figure is available online).
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reference atom and repeats the procedure for this
atom’s nearest neighbors. By repeating this process,
the algorithm builds the current grain outward,
identifying suitable atoms along the way until it has
found all the atoms associated with the current
grain. The GTA then calculates the center of mass
and the average crystallographic orientation of the
current grain, saving this data with the grain
number. With the first grain complete, the GTA
then selects another random grain interior atom,
making sure that it has not already been checked
and added to a grain, as the first reference atom for
the second grain. After all grains are identified, a
nearest-neighbor search of the grain edge atoms is
used to find which grain these atoms should be ad-
ded to. This final step is important if one is inter-
ested in metrics such as grain size. While the grain
edge atoms can be problematic for calculating ori-
entation information, they are still crystalline and
can be a significant fraction of the grain volume for
very fine-grained samples.

Grain Tracking

The GTA algorithm can analyze multiple output
files from atomistic simulations and thus provide
data regarding microstructural evolution through
time. After all grains have been identified in each
output file, the GTA then begins to identify and
reassign each grain number such that it corre-
sponds with its counterpart in the following time
step. To accomplish this mapping, the center of
mass of each grain in the initial reference configu-
ration is compared to the next time step and the
closest center of mass in the new file is found. Once
these two grains are matched, the grain number of
the new file is updated to match the grain number
from the reference configuration. This process is
then repeated for the remaining grains until all
grains are matched. While such a tracking mecha-
nism can fail if a grain has moved too far away be-
tween successive output files, this problem can often
be solved by simply analyzing the microstructure
and tracking the grains more frequently during the
simulation.

Visualization Techniques

To help facilitate the integration of the GTA into
the combined computational–experimental frame-
work needed for ICME, several common visualiza-
tion techniques are employed by the algorithm.
First, pole figures are developed by stereographi-
cally projecting a family of crystal axes for each
grain with respect to a specified viewing direction.
In the examples shown in this article, we project the
100h i poles. To simplify interpretation of the data,

inverse pole figures can also be generated. Because
of crystallographic symmetry for the fcc materials
we focus on here, visualization of the inverse pole
figure can be abbreviated into a single stereographic
triangle. To produce these figures, the GTA auto-

matically imposes all crystallographic symmetry
operations for each grain and projects all associated
poles stereographically. Those points that lie within
the stereographic triangle are then plotted and
graphically represent the orientation for each grain.
Both of these methods are used extensively in the
experimental community for visualizing texture.
Finally, 3-D orientation maps are also created by
plotting all atom positions and color coding each
grain according to its projected inverse pole. Such a
visualization technique replicates traditional output
of orientation imaging microscopy (OIM) software.
All of these capabilities provide a direct link for
simplifying the comparison of experimental texture
data with those results produced by atomistic
modeling.

APPLICATIONS AND EXAMPLES

To illustrate the utility of the GTA as well as
highlight user-controlled features and practical
concerns for the algorithm, several common exam-
ples of atomistic samples were analyzed. MD simu-
lations were carried out with the open-source
LAMMPS code33 using an integration time step of
2 fs, and embedded atom method (EAM) potentials
for Ni and Al developed by Mishin et al.35 were used.
CSP is used to identify noncrystalline atoms, with
CSP ‡2.14 Å2 and CSP ‡2.83 Å2 characterizing de-
fects in Ni and Al, respectively. Additional simula-
tion details will be given when necessary. All
atomistic visualization in this manuscript was
performed with the open-source visualization tool
OVITO.36

Effect of Temperature on a Ni R5 (310)
Symmetric Tilt Grain Boundary

We begin our analysis of atomistic examples by
investigating a very simple, known sample micro-
structure: the R5 (310) grain boundary in Ni. The
bicrystal sample shown in Fig. 3 was created by
tilting the crystals around the [100] crystallographic
axis until there is a misorientation of 36.87� be-
tween the top and bottom half. Figure 3a shows this
misorientation by drawing the 100h i directions from
each grain. Periodic boundary conditions were ap-
plied in the X and Y directions, while free boundary
conditions were implemented in Z. Bicrystal sam-
ples such as these have been used extensively to
investigate behavior such as dislocation emission
from grain boundaries37 or grain boundary migra-
tion.38 These samples were equilibrated at zero
pressure and temperatures of 10 K, 300 K, and
600 K for 20 ps.

Each sample was analyzed with the GTA using an
orientation cutoff of 3�, with results shown in
Fig. 3c–e. In these images, atoms are colored
according to grain number, with light blue signify-
ing the first grain (G1) and green showing the sec-
ond grain (G2). The atoms that are not part of either
grain are shown in dark blue. It is instructive to
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first focus on the sample at 10 K shown in Fig. 3c,
where thermal vibrations are very small. In this
case, dark blue atoms only appear at the bicrystal
interface and at the free surfaces, meaning all
atoms inside of the grains have been properly in-
dexed. Figure 3b shows a {100} pole figure centered
on the tilt axis of the bicrystal or the X axis of the
simulation coordinates. While one 100h i direction of
each crystal is centered on the pole figure, the other
100h i directions show the expected tilt rotation. As

temperature is increased in Fig. 3d and e, a signif-
icant number of atoms cannot be indexed to either
grain. It is important to note that the average ori-
entation we measure is unchanged by this noise.

At first glance, one might think that this behavior
is simply the result of CSP artificially identifying
atoms as being in a defective local environment.
However, Fig. 3f shows atoms in the sample at

600 K colored according to CSP. Only a select few
atoms within the grains are incorrectly identified as
defects (white in this image), so this cannot explain
the large number of dark blue atoms in Fig. 3e. A
closer analysis shows that these atoms are not as-
signed to a grain because their local crystallo-
graphic orientation is different than their
neighbors’ due to thermal vibrations. To highlight
that the GTA is not sensitive to the choice of CSP or
CNA, Fig. 4g shows the atoms colored according to
CNA. While CNA has less trouble finding noncrys-
talline atoms at elevated temperature, we obtain
the exact same result shown in Fig. 4e when we
repeat the GTA analysis, again because of local
orientation fluctuations due to temperature.

Whether this issue needs to be addressed will de-
pend on the information that is of interest for the
particular application. For example, if finding the

Fig. 3. (a) and (b) The 100h i axes of the two grains from a Ni bicrystal in a vector schematic and a pole figure, respectively. (c)–(e) Samples
colored according to grain number, using an orientation cutoff angle (h) of 3�, with light blue for G1 and green for G2, show increasing numbers of
dark blue, unindexed atoms as temperature is increased. (f) and (g) CSP and CNA are not always good indicators of those atoms, which will have
large variations in local orientation. A conjugate gradient minimization (h) or an increase in the orientation cutoff angle (i) will reduce the number
of unindexed atoms (a color version of this figure is available online).
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average orientation of each grain is the main goal,
then the false negatives inside the grain can be ig-
nored and a restrictive orientation cutoff angle can
still be used. However, if it is necessary to accurately
track grain size over time, all of the atoms inside the
grain must be counted. One potential solution would
be to run a subtle energy minimization procedure on
the computational sample before analyzing with the
GTA. Such a minimization will remove the noise
from thermal vibrations, but care must be taken to
ensure that it is not aggressive enough to signifi-
cantly change larger features of the microstructure
being analyzed. For all studies in this manuscript, we
deemed a minimization to be appropriate if no sig-
nificant orientation changes to the grains occurred.
Justification of our energy minimization tolerance is
further discussed in the next section. Figure 3h
shows the 600 K sample, which was minimized with
the conjugate gradient method in LAMMPS (using a
unitless energy tolerance of 10�6 and a force toler-
ance of 10�6 eV/Å) and then analyzed, showing that
all atoms in the grains are identified. Alternatively, a
user can increase the orientation cutoff angle to a
larger value. Figure 3i shows the 600 K sample
analyzed again but with an orientation cutoff angle
of 10�. In this case, all the noise in local orientation
induced by thermal vibrations is less than the cutoff
value and all the atoms are correctly identified. It is
worth noting that increasing the orientation cutoff
angle could artificially lead to the merging of two
grains into one, a possibility that will be discussed
further in the next section.

Texture Analysis of Nanocrystalline
Al Samples

We envision that a major application of the GTA
will be the analysis of texture in atomistic simula-
tions. For example, texture could be tracked during
simulations of film deposition or deformation in
nanostructured materials. To show the power of the

GTA for such analysis, we next analyze two common
types of nanocrystalline samples that are commonly
found in the literature. Nanocrystalline materials
are promising structural materials due to their ex-
tremely high strength39 and atomistic simulations
are often used to study their deformation physics in
either columnar-grained40,41 or random polycrys-
talline samples.42,43 Columnar-grained structures
allow for easy viewing of dislocation-boundary
interactions, while random polycrystalline samples
are more realistic microstructures. A columnar-
grained sample was generated by creating 36 ran-
dom grain centers on a hexagonal lattice and then
building crystallites with a common 100h i axis and a
random rotation angle around this axis for each
grain. A random polycrystalline sample with 46
grains was created using a Voronoi tessellation
construction modified to enforce a minimum sepa-
ration distance between grain nucleation sites44 and
Euler angles that were randomly selected for each
grain. Because simply filling space with atoms until
grains impinge gives an artificial microstructure,
conjugate gradient minimizations in LAMMPS (en-
ergy and force tolerances of 10�6) were applied to
both samples to create fully dense simulation sam-
ples by letting the atoms relax slightly. Both sam-
ples have an average grain size of 5 nm and contain
Al atoms, and periodic boundary conditions are ap-
plied in all directions.

We begin our discussion of these samples by using
the GTA, with an orientation cutoff angle of 1�, to
analyze the columnar-grained sample in more detail.
Figure 4a and b shows the columnar-grained sample
in both its as-assembled state and after minimiza-
tion, with atoms colored according to their grain
number. It is clear that the as-assembled sample is
not fully dense, as many grain boundaries contain
small nanoscale voids, but minimization closes this
porosity. A few grains coalesce, most notably the two
at the top left and the three near the top right of the
sample. These grains actually had very similar

Fig. 4. A columnar-grained Al sample consisting of 36 grains, all with their {110} crystal planes oriented in the X direction. Atoms are labeled by
grain number for (a) the as-assembled sample and (b) after energy minimization. (c) A {100} pole figure along the X axis of the simulation cell
reveals the sample texture.
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rotations around the 110h i axis and were only artifi-
cially separated by porosity in the as-assembled
sample. After minimization, the artificial boundary is
removed and the crystallographic orientations are
close enough that they are considered one grain.

Many unique grains are still identified after mini-
mization, and their orientations are used to create
the {100} pole figure shown in Fig. 4c. The inner circle
on the pole figure is from the (100) and (010) planes of
each grain, which are 45� away from the X axis, while
the outer circle comes from the (001) planes, which
are perpendicular to the X axis. This same data is also
presented in inverse pole figures for each of the sim-
ulation axes in Fig. 5. It is clear that only {110} planes
are pointing in the X direction, and the zoomed image
of the bottom right corner shows that minimization
only leads to a very small deviation from the as-
assembled condition where grains are exactly
columnar. A maximum out-of-plane rotation of 0.1� is
observed for the minimized sample, and most grains
are altered much less than this. Figure 5b and c
shows the inverse pole figures for the Y and Z simu-
lation axes, and the orientations are restricted to the
top borders of the stereographic triangle due to the
columnar nature of the grains. These plots confirm
that we can recreate the type of orientation data sets
that a researcher would take away from experimen-
tal investigations.

To show the effects of different choices for the
orientation cutoff angle more clearly, we focus on
the collection of three grains marked with a dashed
circle in Fig. 4b. These grains are shown in Fig. 6
for orientation cutoff angles of 1�, 1.5�, and 2�, with
atoms colored according to their grain number. With
the original choice of a 1� cutoff angle, three distinct
grains are found, even though the red and orange
grains do not have a discrete plane of noncrystalline
atoms between them. As the cutoff angle for ana-
lysis is increased to 2�, these two grains are now
identified as one by the new measurement standard.
We make no judgment about which is correct be-
cause the decision to exclude low-angle boundaries
may be application dependent.

We next move our attention to GTA analysis of
the random polycrystalline sample in Fig. 7. With
no restrictions on the Euler angles that defined the
orientation of each grain, we expect to have a ran-

dom texture. Figure 7a shows the random poly-
crystalline sample with the atoms colored according
to grain number while Fig. 7b and c present a {100}
pole figure and an inverse pole figure down the X
axis, respectively. Neither Fig. 7a nor Fig. 7b shows
any discernible pattern, confirming the sample’s
random texture. As a final comparison between
columnar grained and random polycrystalline
atomistic samples, Fig. 8 shows orientation maps
for the X axis of the simulation cells. While the
columnar-grained sample (Fig. 8a) is entirely green
and has only {110} planes pointing in the X direc-
tion, the random polycrystalline sample (Fig. 8b)
shows a mixture of colors and orientations. Note
that the black region on the front face of the random
polycrystalline sample is simply a region where a
grain boundary is located at the cell boundary. It is
clear that the GTA can provide quantitative mea-
surements of sample texture while also presenting
the data in a way that is intuitive.

Fig. 5. Inverse pole figures taken from the columnar-grained Al sample, with each point on the triangle corresponding to a different grain. Along
the X axis of the sample, all grains have a {100} texture, whereas the other directions show a distribution of orientations. Energy minimization
changes the out-of-plane orientation by a maximum of 0.1� and much less for most grains.

Fig. 6. A collection of three grains within the columnar-grained
sample. As the orientation cutoff angle is increased, the number of
unindexed atoms (black atoms) is reduced significantly. However,
increasing the orientation cutoff can also lead to two grains being
identified as one, as shown in the case of a 2� cutoff angle.
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Fig. 7. (a) A polycrystalline Al sample, with 46 randomly oriented grains. Atoms are colored according to their grain number. The random
orientation is expressed in both (b) a {100} pole figure and (c) an inverse pole figure along the X axis of the sample coordinates.

Fig. 8. (a) Orientation map from the X axis of the columnar sample, showing the expected {110} texture. (b) Orientation map from the X axis of
the random polycrystalline sample, showing the expected random texture.

Fig. 9. (a) Tensile stress–strain curves for nanocrystalline Al samples with a mean grain size of 5 nm, tested at different temperatures. (b)
Average grain rotation from starting configuration, measured as the angle with respect to the tensile axis. Increasing temperature from 300 K to
600 K leads to a �50% increase in average grain rotation.
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Strained Polycrystalline Sample

The real value of the GTA arises when the start-
ing microstructure is unknown or when structural
changes must be tracked over time. We finish our
analysis of example problems by investigating grain
rotation during the deformation of nanocrystalline
Al at different testing temperatures. The random
polycrystalline sample introduced above was first
equilibrated at 600 K and zero pressure for 100 ps
using a Nose–Hoover thermo/barostat. One sample

was deformed at 600 K, while two others were
cooled to 450 K and 300 K and then deformed. A
constant cooling rate of 30 K/ps was used to lower
the temperature of the system. Deformation was
simulated by applying a uniaxial tensile strain (e)
along the Z axis at a constant true strain rate of
5 9 108 s�1 while keeping zero stress on the other
axes using an NPT ensemble.

Figure 9a presents the true stress–strain curves
from the nanocrystalline Al samples tested at dif-

Fig. 10. Inverse pole figures for a nanocrystalline Al sample deformed at three different temperatures, showing five different grains and tracking
their orientation evolution as a function of time. While the direction of rotation stays the same, the amount of rotation increases with increasing
temperature.

Fig. 11. Tracking of grain coalescence during tensile loading of nanocrystalline Al. Three grains are identified in (a). As strain is applied, the gold
and blue grains rotate toward each other and merge, while the red grain slides into page.
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ferent temperatures. As temperature is increased,
both yield strength and flow stress decrease. Such
behavior has been reported previously (see, e.g.,
Refs. 45,46), but here we can quantify the tempera-
ture dependence of an important deformation
mechanism: grain rotation. While a handful of pre-
vious reports have tracked the rotation of a few select
grains during MD deformation of nanocrystalline
metals, these always represented a fraction of the
total grains in the sample.17,46,47 Here, we track all
grains in the sample and track changes to their ori-
entation as a function of strain for different temper-
atures. We examine this structural evolution in 2%
strain intervals up to 10% applied true strain. For the
limited number of grains that rotate and coalesce to
form larger grains or shrink and disappear, we track
orientation for as long as possible. Figure 9b pre-
sents the average rotation of grains toward the ten-
sile axis to provide a measurement of rotation as a
function of strain. Perhaps not surprisingly because
of the increased diffusion at higher temperatures,
there is significantly more grain rotation on average
for the sample tested at 600 K than for the sample
tested at 300 K. At 10% applied strain, grains in the
600 K sample have rotated �50% more than grains
in the 300 K sample.

Because we track individual orientations as well,
we can focus on interesting grains. Figure 10 pre-
sents inverse pole figures from the tensile axis for
the three testing temperatures, with orientations
shown at different strains. We only plot five grains
here to simplify visualization. Some grains experi-
ence a slow but steady rotation, while others expe-
rience large changes in orientation within one 2%
strain interval. In general, while the grains rotate
more at elevated temperatures, each grain rotates
in roughly the same direction at every temperature.
For example, G5 moves up and to the left in all
frames of Fig. 10. This suggests that the rotation
direction is likely limited by the compatibility with
surrounding grains, and only the magnitude of
rotation is strongly affected by temperature. In
addition to a quantitative understanding of textural
changes, the algorithm also keeps track of grain
shape and center of mass. As such, individual grain
tracking can be carried out in a much simpler
fashion. Traditionally, to document the merging of
two adjacent grains, one might search manually
through the atomistic sample for such a case and
then track the movement and rotation using visual
alignment of atomic planes. Because grain sizes and
orientations are calculated automatically with the
GTA, it is easy to identify which grains will merge
and visualization of these deformation mechanisms
can be conducted quickly. To illustrate, Fig. 11
shows magnified images of the tracking of three
grains. The red grain slides into the page during the
tensile test (disappearing from view), while the gold
and blue grains rotate toward each other and coa-
lesce when 6% true strain is applied.

CONCLUSIONS

Atomistic modeling tools can potentially provide
the enormous data sets of 3-D microstructural fea-
tures that are essential for ICME efforts, but only if
characterization of these simulations evolves from
anecdotal observations to quantitative metrics. In
this article, we have introduced a new post-pro-
cessing algorithm that can be used to identify and
track microstructural changes in crystalline mate-
rials during computational studies on the atomic
scale. The GTA enables the quantitative character-
ization of grain size, grain orientation, and sample
texture while also tracking these features as a
function of time during simulations of dynamic
behavior. This data is also presented in ways that
are commonplace within the experimental commu-
nity, such as pole figures, inverse pole figures, and
orientation maps, to further connect computational
and experimental research. To illustrate the capa-
bilities of the GTA clearly, a number of common MD
simulation cells was also analyzed. These examples
show that:

� Atomistic orientation measurements on the atom-
ic scale can be made by applying simple crystal-
lographic analysis techniques to an atom’s local
environment. This local orientation can enable
the identification of even notoriously difficult to
extract low-angle grain boundaries. By taking
average orientations from all atoms, the crystal-
lographic texture of known test samples was
confirmed, showing that the extremes of strong
out-of-plane texture and completely random tex-
ture could be identified.

� The thermal vibrations in high-temperature sim-
ulations may make it difficult to index certain
crystalline atoms to the correct grain if a restric-
tive orientation cutoff angle is used. While this
does not affect the measured orientation in any
meaningful way, it should be important for
tracking grain size and can be addressed by a
larger cutoff angle or energy-minimization tech-
niques. Care must be taken that any energy
minimization damps out these vibrations but does
not dramatically alter larger microstructural fea-
tures.

� Grain rotation was measured in nanocrystalline
Al as a function of applied strain for three
different testing temperatures. Higher tempera-
tures led to more grain rotation during plastic
deformation, with �50% more grain rotation
toward the tensile axis at 600 K than at 300 K.

As a whole, we hope that our modest contribution of
the GTA analysis tool can have an impact by
encouraging dialogue and data-sharing between the
computational and experimental materials charac-
terization communities. This analysis code will be
provided to any interested researchers who would
like to quantify microstructure in atomistic data
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files. It is our hope that any improvements will in
turn be made available to the ICME community.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the Na-
tional Science Foundation through a CAREER
Award No. DMR-1255305.

REFERENCES

1. J. Allison, D. Backman, and L. Christodoulou, JOM 58, 25
(2006).

2. J. Allison, JOM 63, 15 (2011).
3. National Research Council, Integrated Computational

Materials Engineering, A Transformational Discipline for
Improved Competitiveness and National Security (Wash-
ington, DC: National Academies Press, 2008).

4. J.H. Panchal, S.R. Kalidindi, and D.L. McDowell, Comput.
Aided Des. 45, 4 (2013).

5. J.E. Spowart, Scripta Mater. 55, 5 (2006).
6. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, and J.P. Sim-

mons, Scripta Mater. 55, 23 (2006).
7. M.P. Echlin, A. Mottura, C.J. Torbet, and T.M. Pollock, Rev.

Sci. Instrum. 83, 023701 (2012).
8. S. Ma, J.P. McDonald, B. Tryon, S.M. Yalisove, and T.M.

Pollock, Metall. Mater. Trans. A 38A, 2349 (2007).
9. P.A. Midgley and M. Weyland, Ultramicroscopy 96, 413

(2003).
10. T.F. Kelly and M.K. Miller, Rev. Sci. Instrum. 78, 031101

(2007).
11. H.C. Huang and H. Van Swygenhoven, MRS Bull. 34, 160

(2009).
12. H.L. Wang, L.A. Zepeda-Ruiz, G.H. Gilmer, and M. Upma-

nyu, Nat. Commun. 4, 1956 (2013).
13. B.Q. Cheng and A.H.W. Ngan, Comput. Mater. Sci. 74, 1

(2013).
14. B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez,

and L. Zepeda-Ruiz, Phys. Rev. B 85, 184203 (2012).
15. C.-W. Pao, S.M. Foiles, E.B. Webb III, D.J. Srolovitz, and

J.A. Floro, Phys. Rev. B 79, 224113 (2009).
16. J. Schiotz, Mater. Sci. Eng. A 375, 975 (2004).
17. J. Monk and D. Farkas, Phys. Rev. B 75, 045414 (2007).
18. L. Li, J.L. Shao, Y.F. Li, S.Q. Duan, and J.Q. Liang, Chin.

Phys. B 21, 026402 (2012).
19. A.C. Lund and C.A. Schuh, Appl. Phys. Lett. 82, 2017 (2003).
20. A. Stukowski and K. Albe, Model. Simul. Mater. Sci. Eng.

18, 085001 (2010).

21. A. Stukowski, V.V. Bulatov, and A. Arsenlis, Model. Simul.
Mater. Sci. Eng. 20, 085007 (2012).

22. T. Xu and M. Li, Philos. Mag. 90, 2191 (2010).
23. C.D. Barrett, M.A. Tschopp, and H. El Kadiri, Scripta

Mater. 66, 666 (2012).
24. G.J. Tucker, J.A. Zimmerman, and D.L. McDowell, Int. J.

Eng. Sci. 49, 1424 (2011).
25. P.M. Derlet, S. Van Petegem, and H. Van Swygenhoven,

Phys. Rev. B 71, 024114 (2005).
26. S.P. Coleman, D.E. Spearot, and L. Capolungo, Model. Si-

mul. Mater. Sci. Eng. 21, 055020 (2013).
27. G.J. Tucker and S.M. Foiles, Mater. Sci. Eng. A 571, 207

(2013).
28. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Phys. Rev.

B 58, 11085 (1998).
29. D. Faken and H. Jonsson, Comput. Mater. Sci. 2, 279 (1994).
30. H. Tsuzuki, P.S. Branicio, and J.P. Rino, Comput. Phys.

Commun. 177, 518 (2007).
31. G.J. Ackland and A.P. Jones, Phys. Rev. B 73, 054104

(2006).
32. A. Stukowski, Model. Simul. Mater. Sci. Eng. 20, 045021

(2012).
33. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
34. J.J. Gilvarry, Phys. Rev. 102, 308 (1956).
35. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstanto-

poulos, Phys. Rev. B 59, 3393 (1999).
36. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012

(2010).
37. D.E. Spearot, K.I. Jacob, and D.L. McDowell, Acta Mater.

53, 3579 (2005).
38. J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953

(2006).
39. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta

Mater. 51, 5743 (2003).
40. D. Farkas and L. Patrick, Philos. Mag. 89, 3435 (2009).
41. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H.

Gleiter, Nat. Mater. 1, 45 (2002).
42. A.C. Lund and C.A. Schuh, Acta Mater. 53, 3193 (2005).
43. E. Bitzek, P.M. Derlet, P.M. Anderson, and H. Van

Swygenhoven, Acta Mater. 56, 4846 (2008).
44. T.J. Rupert and C.A. Schuh, Philos. Mag. Lett. 92, 20 (2012).
45. E.D. Tabachnikova, A.V. Podolskiy, V.Z. Bengus, S.N.

Smirnov, M.I. Bidylo, H. Li, P.K. Liaw, H. Choo, K. Csach,
and J. Miskuf, Mater. Sci. Eng. A 503, 110 (2009).

46. J. Schiotz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen, Phys.
Rev. B 60, 11971 (1999).

47. H. Van Swygenhoven and A. Caro, Nanostruct. Mater. 9,
669 (1997).

Panzarino and Rupert428


	Tracking Microstructure of Crystalline Materials: A Post-Processing Algorithm for Atomistic Simulations
	Abstract
	Introduction
	Analysis Methods
	Atom Classification
	Local Crystallographic Orientation
	Grain Identification
	Grain Tracking
	Visualization Techniques

	Applications and Examples
	Effect of Temperature on a Ni Sigma 5 (310) Symmetric Tilt Grain Boundary
	Texture Analysis of Nanocrystalline Al Samples
	Strained Polycrystalline Sample

	Conclusions
	Acknowledgements
	References


