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Introduction
Small-scale mechanical characterization is essential for ensuring 
the service, performance, and lifetime of microscopic compo-
nents, such as thin films and coatings, electronic sensors, and 
MEMS (Micro-Electro-Mechanical Systems). The first mechani-
cal measurements on the submicrometer scale were enabled by 
the development of nanoindentation in the 1980s and early 
1990s. From the beginning [1], Journal of Materials Research 
(JMR) has been the flagship journal for this field. In addition 
to countless contributed articles, the four previous focus issues 
published between 1999 and 2012 [2–5] have strongly contrib-
uted to disseminating the latest in method developments and 
trends in the field. This new focus issue on Advanced Nanome-
chanical Testing is a unique opportunity to identify and reflect 
upon the current research trends.

Nanoindentation
Nanoindentation has been considered the reference small-
scale mechanical characterization method for almost 30 years. 
Its robustness has been repeatedly proven on a wide range of 
materials [6]. In 2002, it became the first and, to date, the only 
nanomechanical testing method sanctioned with an ISO norm 
(ISO:14,577 [7]). Still, a non-negligible number of the contribu-
tions to this focus issue are devoted to further improving its reli-
ability [8–13], based on emerging technologies. These include 
more accurate imaging [8, 10, 11] and faster data processing [9], 
which, for example, allow for improved characterization of the 
geometry of the indenter tip and the resulting contact area. In 
addition, this focus issue documents new method developments, 
which aim at further expanding the capabilities of nanoindenta-
tion beyond the measurement of hardness and Young’s modulus, 
e.g., accessing the local creep properties [14], ductility [15], and 
surface free energy [16] of materials.

Focused Ion Beam (FIB)‑based 
nanomechanical testing
Complex mechanical behaviors and associated materials param-
eters have become accessible through advanced nanomechanical 
testing techniques relying on a preliminary structuring of the 
samples via focused ion beam (FIB) milling. The most popular 
application in the focus issue is measuring the local fracture 
behavior of materials [17–20]. In addition to providing a desired 
complex microsample geometry, the FIB micromachining tech-
nique allows one to visualize the deformation field that would 
otherwise be concealed under the surface [21].

As evidenced by the high number of related contributions, 
the use of the FIB has become essential in the field of nanome-
chanical testing [17, 18, 20–22]. This has inevitably raised con-
cerns about possible measurement artifacts due to ion damage 
incurred during the specimen preparation [20, 23–25]. While 
detrimental effects can be ruled out for some applications [20], 
in other cases, workarounds are actively being developed to 
minimize [24] or to completely avoid [23] exposure of the sam-
ples to highly energetic ion beams.

Big data
A significant trend pervading this focus issue is the strongly 
increasing use of nanoindentation as a high-throughput method 
for producing large amounts of data [26–31], which are then 
analyzed with emerging data science algorithms. The former is 
made possible through recent technical developments by hard-
ware manufacturers which aim at performing a single indenta-
tion within no more than 1 s (KLA: Express Test and NanoBlitz, 
Bruker: XPM, Alemnis: UHSR, and others). This allows for the 
measurement of large mappings of up to 100,000 indents within 
1–2 days. Such large datasets are then statistically analyzed, e.g., 
by machine learning algorithms [26]. The aim of such studies 
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is generally to access the intrinsic mechanical properties of the 
different components of modern alloys and composite materials.

Correlative investigations
Because a statistical analysis does not always yield an unequivo-
cal identification of the material phases, there is a growing trend 
of performing correlative analyses, which combine nanoinden-
tation mapping with imaging of the sample surface using one 
or more analytical techniques [27–29, 32, 33]. Alternatively, 
numerical simulations can be used to inform the experiments 
and data analysis [32, 34]. The most widely used imaging tech-
niques are backscattered electron diffraction (EBSD) for map-
ping the crystallographic orientation and energy dispersive 
X-ray spectroscopy (EDX) for local chemical characterization 
[27–29, 32, 33]. This focus issue also witnesses the use of other 
emerging techniques, such as atom probe tomography (APT), 
which provides chemical composition mapping with strongly 
enhanced spatial resolution [29, 33]. Regardless of the nanome-
chanical testing method, post-mortem analyses appear to greatly 
benefit from the increasing availability of image processing algo-
rithms, such as digital image correlation [11, 25, 35, 36].

In‑situ investigations
In-situ experiments in a microscope offer an attractive alter-
native to combinatorial approaches, since they allow one to 
unequivocally correlate a given mechanical behavior to a given 
deformation mechanism. Their development has been a domi-
nant trend in nanomechanical research throughout the past 
decade, with their application seemingly only being limited 
by the high costs associated with the techniques. This trend is 
continued in the focus issue, which features applications both 
inside scanning electron microscopes (SEM) [17, 18, 21, 22] and 
transmission electron microscopes (TEM) [23, 24].

Extreme testing environments
Combining high spatial resolution with extreme environments 
is arguably the greatest experimental challenge currently faced 
by the nanomechanical testing community. Owing to intense 
research and development activities during the past decade, 
nanoindentation has been successfully expanded to applications 
at high temperatures. This has proven highly beneficial for inves-
tigating not only the deformation behavior of high-temperature 
materials [37, 38], but also the fundamental effects of heat treat-
ments [31]. In addition, the focus issue features a study con-
ducted at cryogenic temperatures [39], which underscores that 
progress is also being made in this direction. Environmentally 
controlled experimental setups also allow investigating the influ-
ence of humidity [19] on mechanical properties. The frontier of 

extreme testing currently appears to lie with very high strain 
rates [40] and very high cycle fatigue [41] applications, with 
both requiring significant improvements to hardware in order 
to deal with the acquisition of mass data within a short time, as 
well as with their subsequent evaluation.

Conclusions
This focus issue on Advanced Nanomechanical Testing docu-
ments how actively developments are taking place in the field of 
nanomechanical testing research. Most of the current develop-
ments aim at deriving benefits from the latest advancements in 
data acquisition, data processing, as well as the new environ-
mental capabilities of nanoindentation hardware. The overarch-
ing goals are to improve the statistical significance of the results 
and to reproduce the extreme environments that are responsible 
for the failure of many systems.

In summary, this focus issue presents a diverse perspective 
of the challenges and opportunities offered at the frontiers of 
nanomechanical testing, which we hope demonstrates to the 
reader the exciting future of this topic.
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